イロン イヨン イヨン イヨン 三日

1/13

Lecture 4: Properties of and Rules for Asymptotic Big-Oh, Big-Omega, and Big-Theta Notation

Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

2/13

1 Time complexity

2 Big-Oh rules

Scaling Transitivity Rule of sums Rule of products Limit rule

3 Examples

Time Complexity of Algorithms

If running time ${\cal T}(n)$ is ${\cal O}(f(n))$ then the function f measures time complexity

- Polynomial algorithms: T(n) is $O(n^k)$; k = const.
- Exponential algorithm: otherwise

Intractable problem: if no polynomial algorithm is known for its solution

Time Complexity Growth

f(n)	Approxim	ate numbe	r of data ite	ems processed per:
	1 minute	1 day	1 year	1 century
n	10	14,400	$5.3 imes 10^6$	$5.3 imes 10^8$
$n \log_{10} n$	10	4,000	$8.8 imes 10^5$	$6.7 imes 10^7$
$n^{1.5}$	10	1.3×10^3	6.5×10^4	1.4×10^6
n^2	10	380	7.3×10^3	7.3×10^4
n^3	10	110	810	3.7×10^3
2^n	10	20	29	35

Beware Exponential Complexity!

- A linear, O(n), algorithm processing 10 items per minute, can process 1.4 × 10⁴ items per day, 5.3 × 10⁶ items per year, and 5.3 × 10⁸ items per century.
- An exponential, $O(2^n)$, algorithm processing **10** items per minute, can process only **20** items per day and only **35** items per century.

イロト イポト イヨト イヨト

Time Complexity Growth

f(n)	Approxim	ate numbe	r of data ite	ems processed per:
	1 minute	1 day	1 year	1 century
n	10	14,400	$5.3 imes 10^6$	$5.3 imes 10^8$
$n \log_{10} n$	10	4,000	8.8×10^5	$6.7 imes 10^7$
$n^{1.5}$	10	1.3×10^3	6.5×10^4	1.4×10^6
n^2	10	380	7.3×10^3	7.3×10^4
n^3	10	110	810	3.7×10^3
2^n	10	20	29	35

Beware Exponential Complexity!

- A linear, O(n), algorithm processing 10 items per minute, can process 1.4 × 10⁴ items per day, 5.3 × 10⁶ items per year, and 5.3 × 10⁸ items per century.
- An exponential, O(2ⁿ), algorithm processing 10 items per minute, can process only 20 items per day and only 35 items per century...

イロト イポト イヨト イヨト

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n \log_2 n$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the linearithmic algorithm $B\ldots$
- **But:** on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n \log_2 n$, or $\log_2 n > 200$, that is, when $\mathbf{n} > \mathbf{2^{200}} \approx \mathbf{10^{60}}!$

Thus, in all practical cases the algorithm B is better than A...

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n \log_2 n$ time units, respectively.

• In the "Big-Oh" sense, the linear algorithm A is better than the linearithmic algorithm B...

• **But:** on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n \log_2 n$, or $\log_2 n > 200$, that is, when $\mathbf{n} > \mathbf{2^{200}} \approx \mathbf{10^{60}}!$

Thus, in all practical cases the algorithm B is better than A...

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n \log_2 n$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the linearithmic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n \log_2 n$, or $\log_2 n > 200$, that is, when $\mathbf{n} > \mathbf{2^{200}} \approx \mathbf{10^{60}}!$

Thus, in all practical cases the algorithm B is better than A...

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n \log_2 n$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the linearithmic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n \log_2 n$, or $\log_2 n > 200$, that is, when $n > 2^{200} \approx 10^{60}!$

Thus, in all practical cases the algorithm B is better than $A.\ldots$

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n \log_2 n$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the linearithmic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n \log_2 n$, or $\log_2 n > 200$, that is, when $n > 2^{200} \approx 10^{60}!$

Thus, in all practical cases the algorithm B is better than A...

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n^2$ time units, respectively.

• In the "Big-Oh" sense, the linear algorithm A is better than the quadratic algorithm $B\ldots$

• **But:** on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n^2$, or n > 200

Thus the algorithm A is better than B in most of practical cases except for n<200 when B becomes faster. . .

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n^2$ time units, respectively.

• In the "Big-Oh" sense, the linear algorithm A is better than the quadratic algorithm B...

• **But:** on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n^2$, or n > 200

Thus the algorithm A is better than B in most of practical cases except for n < 200 when B becomes faster...

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n^2$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the quadratic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

$T_A(n) < T_B(n)$ if $20n < 0.1n^2$, or n > 200

Thus the algorithm A is better than B in most of practical cases except for n < 200 when B becomes faster...

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n^2$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the quadratic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

$T_A(n) < T_B(n)$ if $20n < 0.1n^2$, or n > 200

Thus the algorithm A is better than B in most of practical cases except for n < 200 when B becomes faster...

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n^2$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the quadratic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

$$T_A(n) < T_B(n)$$
 if $20n < 0.1n^2$, or $n > 200$

Thus the algorithm A is better than B in most of practical cases except for n<200 when B becomes faster. . .

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors c > 0, the function cf(n) is O(f(n)), or in shorthand notation cf is O(f).

The proof: $cf(n) < (c + \varepsilon)f(n)$ holds for all n > 0 and $\varepsilon > 0$.

- Constant factors are ignored.
- Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a notation! In particular, f is O(f).

Examples:

 $\begin{array}{ll}
0n \in O(n) & 0.05n \in O(n) \\
0,000,000n \in O(n) & 0.0000005n \in O(n)
\end{array}$

Big-Oh rules ●○○○○○

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors c > 0, the function cf(n) is O(f(n)), or in shorthand notation cf is O(f).

The proof: $cf(n) < (c + \varepsilon)f(n)$ holds for all n > 0 and $\varepsilon > 0$.

- Constant factors are ignored.
- Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a notation! In particular, f is O(f).

Examples:

 $\begin{array}{ll}
60n \in O(n) & 0.05n \in O(n) \\
60,000,000n \in O(n) & 0.0000005n \in O(n)
\end{array}$

Big-Oh rules ●○○○○○

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors c > 0, the function cf(n) is O(f(n)), or in shorthand notation cf is O(f).

The proof: $cf(n) < (c + \varepsilon)f(n)$ holds for all n > 0 and $\varepsilon > 0$.

- Constant factors are ignored.
- Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a notation! In particular, f is O(f).

Examples: $\begin{cases} 50n \in O(n) & 0.05n \in O(n) \\ 50,000,000n \in O(n) & 0.000005n \in O(n) \end{cases}$

Big-Oh rules ●○○○○○

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors c > 0, the function cf(n) is O(f(n)), or in shorthand notation cf is O(f).

The proof: $cf(n) < (c + \varepsilon)f(n)$ holds for all n > 0 and $\varepsilon > 0$.

- Constant factors are ignored.
- Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a notation! In particular, f is O(f).

Examples:
$$\begin{cases} 50n \in O(n) & 0.05n \in O(n) \\ 50,000,000n \in O(n) & 0.000005n \in O(n) \end{cases}$$

Big-Oh rules ○●○○○○

Transitivity

Big-Oh: Transitivity

Transitivity (Lemma 1.16; p.15)

If h is O(g) and g is O(f), then h is O(f).

Informally: if h grows at most as fast as g, which grows at most as fast as f, then h grows at most as fast as f.

 ${\rm Examples:} \ \left\{ \begin{array}{ll} h \in O(g); & g \in O(n^2) & \to & h \in O(n^2) \\ \log_{10} n \in O(n^{0.01}); & n^{0.01} \in O(n) & \to & \log_{10} n \in O(n) \\ 2^n \in O(3^n); & n^{50} \in O(2^n) & \to & n^{50} \in O(3^n) \end{array} \right.$

The proof: If $h(n) \leq c_1 g(n)$ for $n > n_1$ and $g(n) \leq c_2 f(n)$ for $n > n_2$, then $h(n) \leq c_1 c_2 f(n)$ for $n > \max\{n_1, n_2\}$.

8/13

イロン イロン イヨン イヨン 三日 二

Big-Oh rules ○●○○○○

Transitivity

Big-Oh: Transitivity

Transitivity (Lemma 1.16; p.15)

If h is O(g) and g is O(f), then h is O(f).

Informally: if h grows at most as fast as g, which grows at most as fast as f, then h grows at most as fast as f.

 ${\rm Examples:} \ \left\{ \begin{array}{ll} h \in O(g); & g \in O(n^2) & \to & h \in O(n^2) \\ \log_{10} n \in O(n^{0.01}); & n^{0.01} \in O(n) & \to & \log_{10} n \in O(n) \\ 2^n \in O(3^n); & n^{50} \in O(2^n) & \to & n^{50} \in O(3^n) \end{array} \right.$

The proof: If $h(n) \leq c_1 g(n)$ for $n > n_1$ and $g(n) \leq c_2 f(n)$ for $n > n_2$, then $h(n) \leq \underbrace{c_1 c_2}_{c} f(n)$ for $n > \underbrace{\max\{n_1, n_2\}}_{n_0}$.

Big-Oh rules ○○●○○○

Rule of sums

Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17; p.15)

If $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$, then $g_1 + g_2 \in O(\max\{f_1, f_2\})$.

The sum grows as its fastest-growing term:

- If $g \in O(f)$ and $h \in O(f)$, then $g + h \in O(f)$.
- If $g \in O(f)$, then $g + f \in O(f)$.

Examples:

 $\left\{ \begin{array}{ll} {\rm If} \quad h\in O(n) \qquad \mbox{ and } \quad g\in O(n^2), \mbox{ then } \quad g+h\in O(n^2) \\ {\rm If} \quad h\in O(n\log n) \mbox{ and } \quad g\in O(n), \mbox{ then } \quad g+h\in O(n\log n) \end{array} \right.$

The proof: If $g_1(n) \le c_1 f_1(n)$ for $n > n_1$ and $g_2(n) \le c_2 f_2(n)$ for $n > n_2$, then $g_1(n) + g_2(n) \le c_1 f_1(n) + c_2 f_2(n) \le \max\{c_1, c_2\} (f_1(n) + f_2(n)) \le c_1 f_1(n) + c_2 f_2(n) \le c_2 f_2(n) \le c_1 f_1(n) + c_2 f_2(n) \le c_2 f_2(n) + c_2 f_2(n) \le c_2 f_2(n) + c_2 f_2(n) +$

 $2 \cdot \max\{c_1, c_2\} \cdot \max\{f_1(n), f_2(n)\}$ for $n > \max\{n_1, n_2\}$

9/13

n₀ < □ > < ⊡ > < Ξ > < Ξ > . Ξ

Big-Oh rules ○○●○○○

Rule of sums

Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17; p.15)

If $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$, then $g_1 + g_2 \in O(\max\{f_1, f_2\})$.

The sum grows as its fastest-growing term:

- If $g \in O(f)$ and $h \in O(f)$, then $g + h \in O(f)$.
- If $g \in O(f)$, then $g + f \in O(f)$.

Examples:

 $\begin{cases} \text{ If } h \in O(n) & \text{ and } g \in O(n^2), \text{ then } g+h \in O(n^2) \\ \text{ If } h \in O(n \log n) \text{ and } g \in O(n), \text{ then } g+h \in O(n \log n) \\ \text{ The proof: If } g_1(n) \le c_1 f_1(n) \text{ for } n > n_1 \text{ and } g_2(n) \le c_2 f_2(n) \text{ for } n > n_2, \\ \text{ then } g_1(n) + g_2(n) \le c_1 f_1(n) + c_2 f_2(n) \le \max\{c_1, c_2\} (f_1(n) + f_2(n)) \le 2 \cdot \max\{c_1, c_2\} \cdot \max\{f_1(n), f_2(n)\} \text{ for } n > \max\{n_1, n_2\}. \\ \underbrace{2 \cdot \max\{c_1, c_2\}}_{c} \cdot \max\{f_1(n), f_2(n)\} \text{ for } n > \max\{n_1, n_2\}. \\ \underbrace{2 \cdot \max\{c_1, c_2\}}_{n_0 \in \square \ r \to \infty} \cdot \mathbb{R} \xrightarrow{\mathcal{O} \subset \mathcal{O}}_{g/13} (f_1(n) + f_2(n)) \le 2 \cdot \max\{f_1(n), f_2(n)\} \text{ for } n > \max\{n_1, n_2\}. \end{cases}$

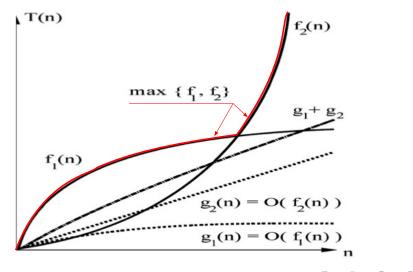
Jutline	

Time complexity

Big-Oh rules ○○○●○○

Rule of sums

Big-Oh: Rule of Sums



< 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)

If $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$, then $g_1g_2 \in O(f_1f_2)$.

The product of upper bounds of functions gives an upper bound for the product of the functions:

• If $g \in O(f)$ and $h \in O(f)$, then $gh \in O(f^2)$.

• If
$$g \in O(f)$$
, then $gh \in O(fh)$.

Examples:

- If $h \in O(n)$ and $g \in O(n^2)$, then $gh \in O(n^3)$.
- If $h \in O(\log n)$ and $g \in O(n)$, then $gh \in O(n \log n)$.

The proof: If $g_1(n) \le c_1 f_1(n)$ for $n > n_1$ and $g_2(n) \le c_2 f_2(n)$ for $n > n_2$, then $g_1(n)g_2(n) \le c_1 c_2 f_1(n)f_2(n)$ for $n > \max\{n_1, n_2\}$.

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)

If $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$, then $g_1g_2 \in O(f_1f_2)$.

The product of upper bounds of functions gives an upper bound for the product of the functions:

- If $g \in O(f)$ and $h \in O(f)$, then $gh \in O(f^2)$.
- If $g \in O(f)$, then $gh \in O(fh)$.

Examples:

- If $h \in O(n)$ and $g \in O(n^2)$, then $gh \in O(n^3)$.
- If $h \in O(\log n)$ and $g \in O(n)$, then $gh \in O(n \log n)$.

The proof: If $g_1(n) \le c_1 f_1(n)$ for $n > n_1$ and $g_2(n) \le c_2 f_2(n)$ for $n > n_2$, then $g_1(n)g_2(n) \le c_1 c_2 f_1(n)f_2(n)$ for $n > \max\{n_1, n_2\}$.

Big-Oh rules ○○○○●○

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)

If $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$, then $g_1g_2 \in O(f_1f_2)$.

The product of upper bounds of functions gives an upper bound for the product of the functions:

- If $g \in O(f)$ and $h \in O(f)$, then $gh \in O(f^2)$.
- If $g \in O(f)$, then $gh \in O(fh)$.

Examples:

- If $h \in O(n)$ and $g \in O(n^2)$, then $gh \in O(n^3)$.
- If $h \in O(\log n)$ and $g \in O(n)$, then $gh \in O(n \log n)$.

The proof: If $g_1(n) \le c_1 f_1(n)$ for $n > n_1$ and $g_2(n) \le c_2 f_2(n)$ for $n > n_2$, then $g_1(n)g_2(n) \le c_1 c_2 f_1(n)f_2(n)$ for $n > \max\{n_1, n_2\}$.

Big-Oh rules ○○○○●○

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)

If $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$, then $g_1g_2 \in O(f_1f_2)$.

The product of upper bounds of functions gives an upper bound for the product of the functions:

• If $g \in O(f)$ and $h \in O(f)$, then $gh \in O(f^2)$.

• If
$$g \in O(f)$$
, then $gh \in O(fh)$.

Examples:

- If $h \in O(n)$ and $g \in O(n^2)$, then $gh \in O(n^3)$.
- If $h \in O(\log n)$ and $g \in O(n)$, then $gh \in O(n \log n)$.

The proof: If $g_1(n) \le c_1 f_1(n)$ for $n > n_1$ and $g_2(n) \le c_2 f_2(n)$ for $n > n_2$, then $g_1(n)g_2(n) \le c_1 c_2 f_1(n)f_2(n)$ for $n > \max\{n_1, n_2\}$.

11 / 13

Big-Oh rules ○○○○●○

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)

If $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$, then $g_1g_2 \in O(f_1f_2)$.

The product of upper bounds of functions gives an upper bound for the product of the functions:

• If $g \in O(f)$ and $h \in O(f)$, then $gh \in O(f^2)$.

• If
$$g \in O(f)$$
, then $gh \in O(fh)$.

Examples:

- If $h \in O(n)$ and $g \in O(n^2)$, then $gh \in O(n^3)$.
- If $h \in O(\log n)$ and $g \in O(n)$, then $gh \in O(n \log n)$.

The proof: If $g_1(n) \le c_1 f_1(n)$ for $n > n_1$ and $g_2(n) \le c_2 f_2(n)$ for $n > n_2$, then $g_1(n)g_2(n) \le c_1c_2 f_1(n)f_2(n)$ for $n > \max\{n_1, n_2\}$.

 n_0

Big-Oh rules ○○○○○●

Limit rule

Big-Oh: The Limit Rule

Suppose the ratio's limit $\lim_{n\to\infty} \frac{f(n)}{g(n)} = L$ exists (may be infinite, ∞).

$$\begin{array}{lll} \mbox{Then} \\ \left\{ \begin{array}{lll} \mbox{if} & L=0 & \mbox{then} & f\in O(g) \\ \mbox{if} & 0< L<\infty & \mbox{then} & f\in \Theta(g) \\ \mbox{if} & L=\infty & \mbox{then} & f\in \Omega(g) \end{array} \right. \end{array}$$

When f and g are positive and differentiable functions for x > 0, but $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty$ or $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$, the limit L can be computed using the standard **L'Hopital** rule of calculus:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

where z'(x) denotes the first derivative of the function z(x).

・ロト ・四ト ・ヨト ・ヨト

Examples 1.22 and 1.23 (Textbook, p.16)

Example 1.22: Exponential functions grow faster than powers: n^k is $O(b^n)$ for all b > 1, n > 1, and $k \ge 0$.

Proof: by induction or by the limit rule (the L'Hopital approach):

Successive (k times) differentiation of n^k and b^n by n: $\lim_{n \to \infty} \frac{n^k}{b^n} = \lim_{n \to \infty} \frac{kn^{k-1}}{b^n \ln b} = \lim_{n \to \infty} \frac{k(k-1)n^{k-2}}{b^n (\ln b)^2} = \dots = \lim_{n \to \infty} \frac{k!}{b^n (\ln b)^k} = 0.$

Example 1.23: Logarithmic functions grow slower than powers: $\log_b n$ is $O(n^k)$ for all b > 1, k > 0.

Proof: This is the inverse of the preceding feature.

As a result, $\log n \in O(n)$ and $n \log n \in O(n^2)$.

 $\log_b n$ is $O(\log n)$ for all b > 1 because $\log_b n = \log_b a \times \log_a n$

Examples 1.22 and 1.23 (Textbook, p.16)

Example 1.22: Exponential functions grow faster than powers: n^k is $O(b^n)$ for all b > 1, n > 1, and $k \ge 0$.

Proof: by induction or by the limit rule (the L'Hopital approach):

Successive (k times) differentiation of n^k and b^n by n: $\lim_{n \to \infty} \frac{n^k}{b^n} = \lim_{n \to \infty} \frac{kn^{k-1}}{b^n \ln b} = \lim_{n \to \infty} \frac{k(k-1)n^{k-2}}{b^n (\ln b)^2} = \dots = \lim_{n \to \infty} \frac{k!}{b^n (\ln b)^k} = 0.$

Example 1.23: Logarithmic functions grow slower than powers: $\log_b n$ is $O(n^k)$ for all b > 1, k > 0.

Proof: This is the inverse of the preceding feature.

As a result, $\log n \in O(n)$ and $n \log n \in O(n^2)$.

 $\log_b n$ is $O(\log n)$ for all b > 1 because $\log_b n = \log_b a \times \log_a n$