Lecture 4: Properties of and Rules for
Asymptotic Big-Oh, Big-Omega, and Big-Theta Notation

Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures



@ Time complexity

® Big-Oh rules
Scaling
Transitivity
Rule of sums
Rule of products
Limit rule

© Examples



Time complexity

Time Complexity of Algorithms

If running time T'(n) is O(f(n)) then the function f measures
time complexity

e Polynomial algorithms: T'(n) is O(n*); k = const.

e Exponential algorithm: otherwise
Intractable problem: if no polynomial algorithm is known for its
solution



Time complexity

Time Complexity Growth

f(n) Approximate number of data items processed per:
1 minute 1 day 1 year 1 century
n 10 14,400 | 5.3 x 10° 5.3 x 10%
nlogyn 10 4,000 8.8 x 10° 6.7 x 107
nt> 10 1.3 x 103 | 6.5 x 107 1.4 x 105
n? 10 380 7.3 x 103 7.3 x 10%
n3 10 110 810 3.7 x 10°

A 10 20 29 35

13



Time complexity

Time Complexity Growth

f(n) Approximate number of data items processed per:
1 minute 1 day 1 year 1 century
n 10 14,400 | 5.3 x 10° 5.3 x 10%
nlogyn 10 4,000 8.8 x 10° 6.7 x 107
nt> 10 1.3 x 103 | 6.5 x 107 1.4 x 105
n? 10 380 7.3 x 103 7.3 x 10%
n3 10 110 810 3.7 x 10°

A 10 20 29 35

Beware Exponential Complexity!

e A linear, O(n), algorithm processing 10 items per minute, can
process 1.4 x 10% items per day, 5.3 x 109 items per year, and
5.3 x 10® items per century.

e An exponential, O(2™), algorithm processing 10 items per minute,
can process only 20 items per day and only 35 items per century. ..

V.




Time complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 74(n) = 20n time units
and Ts(n) = 0.1nlog, n time units, respectively.




Time complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 74(n) = 20n time units
and Ts(n) = 0.1nlog, n time units, respectively.

e In the “Big-Oh" sense, the linear algorithm A is better than
the linearithmic algorithm B. ..



Time complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 74(n) = 20n time units
and Ts(n) = 0.1nlog, n time units, respectively.

e In the “Big-Oh" sense, the linear algorithm A is better than
the linearithmic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?



Time complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 74(n) = 20n time units
and Ts(n) = 0.1nlog, n time units, respectively.

e In the “Big-Oh" sense, the linear algorithm A is better than
the linearithmic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

Ta(n) <Tg(n) if 20n < 0.1nlogyn,
or logyn > 200, that is, when n > 2200 ~ 1060]



Time complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 74(n) = 20n time units
and Ts(n) = 0.1nlog, n time units, respectively.

e In the “Big-Oh" sense, the linear algorithm A is better than
the linearithmic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

Ta(n) <Tg(n) if 20n < 0.1nlogyn,
or logyn > 200, that is, when n > 2200 ~ 1060]

Thus, in all practical cases the algorithm B is better than A. ..



Time complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 7'4(n) = 20n time units
and Tg(n) = 0.1n? time units, respectively.

6/13



Time complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 7'4(n) = 20n time units
and Tg(n) = 0.1n? time units, respectively.

e In the "Big-Oh" sense, the linear algorithm A is better than
the quadratic algorithm B. ..

6/13



Time complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 7'4(n) = 20n time units
and Tg(n) = 0.1n? time units, respectively.

e In the "Big-Oh" sense, the linear algorithm A is better than
the quadratic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

6/13



Time complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 7'4(n) = 20n time units
and Tg(n) = 0.1n? time units, respectively.

e In the "Big-Oh" sense, the linear algorithm A is better than
the quadratic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

Ta(n) < Tg(n) if 20n < 0.1n2, or n > 200

6/13



Time complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 7'4(n) = 20n time units
and Tg(n) = 0.1n? time units, respectively.

e In the "Big-Oh" sense, the linear algorithm A is better than
the quadratic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

Ta(n) < Tg(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. ..

6/13



Big-Oh rules
.

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors ¢ > 0, the function cf(n) is O(f(n)),
or in shorthand notation cf is O(f).




Big-Oh rules
.

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors ¢ > 0, the function cf(n) is O(f(n)),
or in shorthand notation cf is O(f).

The proof: ¢f(n) < (c+¢€)f(n) holds for all n > 0 and £ > 0.



Big-Oh rules
.

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors ¢ > 0, the function ¢f(n) is O(f(n)),
or in shorthand notation cf is O(f).

The proof: ¢f(n) < (c+¢€)f(n) holds for all n > 0 and £ > 0.
e Constant factors are ignored.
e Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a
notation! In particular, f is O(f).



Big-Oh rules
.

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors ¢ > 0, the function ¢f(n) is O(f(n)),
or in shorthand notation cf is O(f).

The proof: ¢f(n) < (c+¢€)f(n) holds for all n > 0 and £ > 0.
e Constant factors are ignored.
e Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a
notation! In particular, f is O(f).

50n € O(n) 0.05n € O(n)

Examples: { 50,000,000 € O(n) 0.0000005n € O(n)



Big-Oh rules
.

Transitivity

Big-Oh: Transitivity

Transitivity (Lemma 1.16; p.15)
If his O(g) and g is O(f), then h is O(f).

Informally: if h grows at most as fast as g, which grows at most as
fast as f, then h grows at most as fast as f.

h € O(g); g € 0O(n?) — he0on?
Examples: logiyn € O(n%); n®% e Om) — logyn € O(n)

2" € O(3"); n e 0o@2") — n0e0o@3n)



Big-Oh rules
.

Transitivity

Big-Oh: Transitivity

Transitivity (Lemma 1.16; p.15)
If his O(g) and g is O(f), then h is O(f).

Informally: if h grows at most as fast as g, which grows at most as
fast as f, then h grows at most as fast as f.

h € O(g); g € 0O(n?) — he0on?
Examples: logiyn € O(n%); n®% e Om) — logyn € O(n)
2" € O(3"); n e 0o@2") — n0e0o@3n)

The proof: If h(n) < c1g(n) for n > ny and g(n) < caf(n) for
n > ng, then h(n) < cica f(n) for n > max{ni, na}.
~~ —_——

C 70



Big-Oh rules
®0

Rule of sums

Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17; p.15)
If g1 € O(f1) and g2 € O(f2), then g1 + g2 € O(max{fi, fa}).

The sum grows as its fastest-growing term:
e If g€ O(f) and h € O(f), then g+ h € O(f).
e If g € O(f), then g+ f € O(f).

Examples:

If heO(n) and g€ O(n?), then g+ hc O(n?)
If heO(nlogn) and g€ O(n), then g+ h e O(nlogn)



Big-Oh rules
®0

Rule of sums

Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17; p.15)
If g1 € O(f1) and g2 € O(f2), then g1 + g2 € O(max{fi, fa}).

The sum grows as its fastest-growing term:
e If g€ O(f) and h € O(f), then g+ h € O(f).
e If g € O(f), then g+ f € O(f).

Examples:
If heO(n) and g€ O(n?), then g+ hc O(n?)
If heO(nlogn) and g€ O(n), then g+ h e O(nlogn)

The proof: If g1(n) < c1fi(n) for n > n1 and g2(n) < cafa2(n) for n > no,
then g1(n) + g2(n) < c1fi(n) + c2f2(n) < max{ci, 2} (fi(n) + fa(n)) <
———

2 - max{cy, c2} - max { f1(n), f2(n)} for n > maXT{n17 na}t.
N—_— ——— N— —

c no



Big-Oh rules
oce

Rule of sums

Big-Oh: Rule of Sums

n



Big-Oh rules
°

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)
If g1 € O(f1) and g2 € O(f2), then g1g> € O(f1f2).

11/13



Big-Oh rules
°

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)
If g1 € O(f1) and g2 € O(f2), then g1g> € O(f1f2).

The product of upper bounds of functions gives an upper bound
for the product of the functions:

11/13



Big-Oh rules
°

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)
If g1 € O(f1) and g2 € O(f2), then g1g> € O(f1f2).

The product of upper bounds of functions gives an upper bound
for the product of the functions:

e If g€ O(f) and h € O(f), then gh € O(f?).
e If g € O(f), then gh € O(fh).

11/13



Big-Oh rules
°

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)
If g1 € O(f1) and g2 € O(f2), then g1g> € O(f1f2).

The product of upper bounds of functions gives an upper bound
for the product of the functions:

e If g€ O(f) and h € O(f), then gh € O(f?).
e If g € O(f), then gh € O(fh).
Examples:
e If h € O(n) and g € O(n?), then gh € O(n?).
e If h € O(logn) and g € O(n), then gh € O(nlogn).

11/13



Big-Oh rules
°

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)
If g1 € O(f1) and g2 € O(f2), then g1g> € O(f1f2).

The product of upper bounds of functions gives an upper bound
for the product of the functions:

e If g€ O(f) and h € O(f), then gh € O(f?).

e If g € O(f), then gh € O(fh).
Examples:

e If h € O(n) and g € O(n?), then gh € O(n?).

e If h € O(logn) and g € O(n), then gh € O(nlogn).
The proof: If gi(n) < cifi(n) for n > ny and g2(n) < caf2(n) for n > na,
then g1(n)g2(n) < cica fi(n) f2(n) for n > max{ni,na}.

~~ _—

c ng

11/13



Big-Oh rules
°

Limit rule

Big-Oh: The Limit Rule

Suppose the ratio’s limit hm Lg = L exists (may be infinite, o).

if L=0 then f € O(g)
Then { if 0<L<oo then feO(g)
if L=o0 then f € Q(g)

When f and g are positive and differentiable functions for z > 0, but
lim f(z) = lim g(z) = oo or lim f(z)= lim g(z) =0, the limit L
x—00 T—00 T—r00 T —r00

can be computed using the standard L’Hopital rule of calculus:

i 1@ _ o F@)

Z—00 g(x) Z—00 g’(q;)

where z/(z) denotes the first derivative of the function z(x).

12 /13



Examples

Examples 1.22 and 1.23 (Textbook, p.16)

Example 1.22: Exponential functions grow faster than powers:
ks O@") forallb>1,n>1, and k > 0.

Proof: by induction or by the limit rule (the L'Hopital approach):

Successive (k times) differentiation of n* and " by n:
nk=1 . k(k—1)nk—2

Gy —nh_{go br(mb)2 -

=0.

= lim
n— o0

. k
lim - = hm

k!
s b i b7 (In b)*

13/13



Examples

Examples 1.22 and 1.23 (Textbook, p.16)

Example 1.22: Exponential functions grow faster than powers:
ks O@") forallb>1,n>1, and k > 0.

Proof: by induction or by the limit rule (the L'Hopital approach):

Successive (k times) differentiation of n* and " by n:
nkt lim k(k—1)n*—2

=0.

= lim

k
. n _ k!
lim % = hm ez == T nD)F

n—oo b

Example 1.23: Logarithmic functions grow slower than powers:
log,n is O(n*) for all b > 1, k > 0.

Proof: This is the inverse of the preceding feature.

As a result, logn € O(n) and nlogn € O(n?).

log, n is O(logn) for all b > 1 because log, n = log, a x log, n )

13/13



	Time complexity
	Big-Oh rules
	Scaling
	Transitivity
	Rule of sums
	Rule of products
	Limit rule

	Examples

