
Outline Time complexity Big-Oh rules Examples

Lecture 4: Properties of and Rules for
Asymptotic Big-Oh, Big-Omega, and Big-Theta Notation

Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 13



Outline Time complexity Big-Oh rules Examples

1 Time complexity

2 Big-Oh rules
Scaling
Transitivity
Rule of sums
Rule of products
Limit rule

3 Examples

2 / 13



Outline Time complexity Big-Oh rules Examples

Time Complexity of Algorithms

If running time T (n) is O(f(n)) then the function f measures
time complexity

• Polynomial algorithms: T (n) is O(nk); k = const.

• Exponential algorithm: otherwise

Intractable problem: if no polynomial algorithm is known for its
solution

3 / 13



Outline Time complexity Big-Oh rules Examples

Time Complexity Growth

f(n) Approximate number of data items processed per:
1 minute 1 day 1 year 1 century

n 10 14, 400 5.3× 106 5.3× 108

n log10 n 10 4, 000 8.8× 105 6.7× 107

n1.5 10 1.3× 103 6.5× 104 1.4× 106

n2 10 380 7.3× 103 7.3× 104

n3 10 110 810 3.7× 103

2n 10 20 29 35

Beware Exponential Complexity!

• A linear, O(n), algorithm processing 10 items per minute, can
process 1.4× 104 items per day, 5.3× 106 items per year, and
5.3× 108 items per century.

• An exponential, O(2n), algorithm processing 10 items per minute,
can process only 20 items per day and only 35 items per century. . .

4 / 13



Outline Time complexity Big-Oh rules Examples

Time Complexity Growth

f(n) Approximate number of data items processed per:
1 minute 1 day 1 year 1 century

n 10 14, 400 5.3× 106 5.3× 108

n log10 n 10 4, 000 8.8× 105 6.7× 107

n1.5 10 1.3× 103 6.5× 104 1.4× 106

n2 10 380 7.3× 103 7.3× 104

n3 10 110 810 3.7× 103

2n 10 20 29 35

Beware Exponential Complexity!

• A linear, O(n), algorithm processing 10 items per minute, can
process 1.4× 104 items per day, 5.3× 106 items per year, and
5.3× 108 items per century.

• An exponential, O(2n), algorithm processing 10 items per minute,
can process only 20 items per day and only 35 items per century. . .

4 / 13



Outline Time complexity Big-Oh rules Examples

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .

5 / 13



Outline Time complexity Big-Oh rules Examples

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .

5 / 13



Outline Time complexity Big-Oh rules Examples

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .

5 / 13



Outline Time complexity Big-Oh rules Examples

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .

5 / 13



Outline Time complexity Big-Oh rules Examples

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .

5 / 13



Outline Time complexity Big-Oh rules Examples

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .

6 / 13



Outline Time complexity Big-Oh rules Examples

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .

6 / 13



Outline Time complexity Big-Oh rules Examples

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .

6 / 13



Outline Time complexity Big-Oh rules Examples

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .

6 / 13



Outline Time complexity Big-Oh rules Examples

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .

6 / 13



Outline Time complexity Big-Oh rules Examples

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors c > 0, the function cf(n) is O(f(n)),
or in shorthand notation cf is O(f).

The proof: cf(n) < (c + ε)f(n) holds for all n > 0 and ε > 0.

• Constant factors are ignored.

• Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a
notation! In particular, f is O(f).

Examples:

{
50n ∈ O(n) 0.05n ∈ O(n)
50, 000, 000n ∈ O(n) 0.0000005n ∈ O(n)

7 / 13



Outline Time complexity Big-Oh rules Examples

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors c > 0, the function cf(n) is O(f(n)),
or in shorthand notation cf is O(f).

The proof: cf(n) < (c + ε)f(n) holds for all n > 0 and ε > 0.

• Constant factors are ignored.

• Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a
notation! In particular, f is O(f).

Examples:

{
50n ∈ O(n) 0.05n ∈ O(n)
50, 000, 000n ∈ O(n) 0.0000005n ∈ O(n)

7 / 13



Outline Time complexity Big-Oh rules Examples

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors c > 0, the function cf(n) is O(f(n)),
or in shorthand notation cf is O(f).

The proof: cf(n) < (c + ε)f(n) holds for all n > 0 and ε > 0.

• Constant factors are ignored.

• Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a
notation! In particular, f is O(f).

Examples:

{
50n ∈ O(n) 0.05n ∈ O(n)
50, 000, 000n ∈ O(n) 0.0000005n ∈ O(n)

7 / 13



Outline Time complexity Big-Oh rules Examples

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15; p.15)

For all constant factors c > 0, the function cf(n) is O(f(n)),
or in shorthand notation cf is O(f).

The proof: cf(n) < (c + ε)f(n) holds for all n > 0 and ε > 0.

• Constant factors are ignored.

• Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a
notation! In particular, f is O(f).

Examples:

{
50n ∈ O(n) 0.05n ∈ O(n)
50, 000, 000n ∈ O(n) 0.0000005n ∈ O(n)

7 / 13



Outline Time complexity Big-Oh rules Examples

Transitivity

Big-Oh: Transitivity

Transitivity (Lemma 1.16; p.15)

If h is O(g) and g is O(f), then h is O(f).

Informally: if h grows at most as fast as g, which grows at most as
fast as f , then h grows at most as fast as f .

Examples:


h ∈ O(g); g ∈ O(n2) → h ∈ O(n2)

log10 n ∈ O(n0.01); n0.01 ∈ O(n) → log10 n ∈ O(n)

2n ∈ O(3n); n50 ∈ O(2n) → n50 ∈ O(3n)

The proof: If h(n) ≤ c1g(n) for n > n1 and g(n) ≤ c2f(n) for
n > n2, then h(n) ≤ c1c2︸︷︷︸

c

f(n) for n > max{n1, n2}︸ ︷︷ ︸
n0

.

8 / 13



Outline Time complexity Big-Oh rules Examples

Transitivity

Big-Oh: Transitivity

Transitivity (Lemma 1.16; p.15)

If h is O(g) and g is O(f), then h is O(f).

Informally: if h grows at most as fast as g, which grows at most as
fast as f , then h grows at most as fast as f .

Examples:


h ∈ O(g); g ∈ O(n2) → h ∈ O(n2)

log10 n ∈ O(n0.01); n0.01 ∈ O(n) → log10 n ∈ O(n)

2n ∈ O(3n); n50 ∈ O(2n) → n50 ∈ O(3n)

The proof: If h(n) ≤ c1g(n) for n > n1 and g(n) ≤ c2f(n) for
n > n2, then h(n) ≤ c1c2︸︷︷︸

c

f(n) for n > max{n1, n2}︸ ︷︷ ︸
n0

.

8 / 13



Outline Time complexity Big-Oh rules Examples

Rule of sums

Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17; p.15)

If g1 ∈ O(f1) and g2 ∈ O(f2), then g1 + g2 ∈ O(max{f1, f2}).

The sum grows as its fastest-growing term:
• If g ∈ O(f) and h ∈ O(f), then g + h ∈ O(f).
• If g ∈ O(f), then g + f ∈ O(f).

Examples:{
If h ∈ O(n) and g ∈ O(n2), then g + h ∈ O(n2)

If h ∈ O(n log n) and g ∈ O(n), then g + h ∈ O(n log n)

The proof: If g1(n) ≤ c1f1(n) for n > n1 and g2(n) ≤ c2f2(n) for n > n2,

then g1(n) + g2(n) ≤ c1f1(n) + c2f2(n) ≤ max{c1, c2}︸ ︷︷ ︸
c

(f1(n) + f2(n)) ≤

2 ·max{c1, c2}︸ ︷︷ ︸
c

·max {f1(n), f2(n)} for n > max{n1, n2}︸ ︷︷ ︸
n0

.

9 / 13



Outline Time complexity Big-Oh rules Examples

Rule of sums

Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17; p.15)

If g1 ∈ O(f1) and g2 ∈ O(f2), then g1 + g2 ∈ O(max{f1, f2}).

The sum grows as its fastest-growing term:
• If g ∈ O(f) and h ∈ O(f), then g + h ∈ O(f).
• If g ∈ O(f), then g + f ∈ O(f).

Examples:{
If h ∈ O(n) and g ∈ O(n2), then g + h ∈ O(n2)

If h ∈ O(n log n) and g ∈ O(n), then g + h ∈ O(n log n)

The proof: If g1(n) ≤ c1f1(n) for n > n1 and g2(n) ≤ c2f2(n) for n > n2,

then g1(n) + g2(n) ≤ c1f1(n) + c2f2(n) ≤ max{c1, c2}︸ ︷︷ ︸
c

(f1(n) + f2(n)) ≤

2 ·max{c1, c2}︸ ︷︷ ︸
c

·max {f1(n), f2(n)} for n > max{n1, n2}︸ ︷︷ ︸
n0

.

9 / 13



Outline Time complexity Big-Oh rules Examples

Rule of sums

Big-Oh: Rule of Sums

10 / 13



Outline Time complexity Big-Oh rules Examples

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)

If g1 ∈ O(f1) and g2 ∈ O(f2), then g1g2 ∈ O(f1f2).

The product of upper bounds of functions gives an upper bound
for the product of the functions:

• If g ∈ O(f) and h ∈ O(f), then gh ∈ O(f2).

• If g ∈ O(f), then gh ∈ O(fh).

Examples:

• If h ∈ O(n) and g ∈ O(n2), then gh ∈ O(n3).

• If h ∈ O(log n) and g ∈ O(n), then gh ∈ O(n log n).

The proof: If g1(n) ≤ c1f1(n) for n > n1 and g2(n) ≤ c2f2(n) for n > n2,

then g1(n)g2(n) ≤ c1c2︸︷︷︸
c

f1(n)f2(n) for n > max{n1, n2}︸ ︷︷ ︸
n0

.

11 / 13



Outline Time complexity Big-Oh rules Examples

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)

If g1 ∈ O(f1) and g2 ∈ O(f2), then g1g2 ∈ O(f1f2).

The product of upper bounds of functions gives an upper bound
for the product of the functions:

• If g ∈ O(f) and h ∈ O(f), then gh ∈ O(f2).

• If g ∈ O(f), then gh ∈ O(fh).

Examples:

• If h ∈ O(n) and g ∈ O(n2), then gh ∈ O(n3).

• If h ∈ O(log n) and g ∈ O(n), then gh ∈ O(n log n).

The proof: If g1(n) ≤ c1f1(n) for n > n1 and g2(n) ≤ c2f2(n) for n > n2,

then g1(n)g2(n) ≤ c1c2︸︷︷︸
c

f1(n)f2(n) for n > max{n1, n2}︸ ︷︷ ︸
n0

.

11 / 13



Outline Time complexity Big-Oh rules Examples

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)

If g1 ∈ O(f1) and g2 ∈ O(f2), then g1g2 ∈ O(f1f2).

The product of upper bounds of functions gives an upper bound
for the product of the functions:

• If g ∈ O(f) and h ∈ O(f), then gh ∈ O(f2).

• If g ∈ O(f), then gh ∈ O(fh).

Examples:

• If h ∈ O(n) and g ∈ O(n2), then gh ∈ O(n3).

• If h ∈ O(log n) and g ∈ O(n), then gh ∈ O(n log n).

The proof: If g1(n) ≤ c1f1(n) for n > n1 and g2(n) ≤ c2f2(n) for n > n2,

then g1(n)g2(n) ≤ c1c2︸︷︷︸
c

f1(n)f2(n) for n > max{n1, n2}︸ ︷︷ ︸
n0

.

11 / 13



Outline Time complexity Big-Oh rules Examples

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)

If g1 ∈ O(f1) and g2 ∈ O(f2), then g1g2 ∈ O(f1f2).

The product of upper bounds of functions gives an upper bound
for the product of the functions:

• If g ∈ O(f) and h ∈ O(f), then gh ∈ O(f2).

• If g ∈ O(f), then gh ∈ O(fh).

Examples:

• If h ∈ O(n) and g ∈ O(n2), then gh ∈ O(n3).

• If h ∈ O(log n) and g ∈ O(n), then gh ∈ O(n log n).

The proof: If g1(n) ≤ c1f1(n) for n > n1 and g2(n) ≤ c2f2(n) for n > n2,

then g1(n)g2(n) ≤ c1c2︸︷︷︸
c

f1(n)f2(n) for n > max{n1, n2}︸ ︷︷ ︸
n0

.

11 / 13



Outline Time complexity Big-Oh rules Examples

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18; p.16)

If g1 ∈ O(f1) and g2 ∈ O(f2), then g1g2 ∈ O(f1f2).

The product of upper bounds of functions gives an upper bound
for the product of the functions:

• If g ∈ O(f) and h ∈ O(f), then gh ∈ O(f2).

• If g ∈ O(f), then gh ∈ O(fh).

Examples:

• If h ∈ O(n) and g ∈ O(n2), then gh ∈ O(n3).

• If h ∈ O(log n) and g ∈ O(n), then gh ∈ O(n log n).

The proof: If g1(n) ≤ c1f1(n) for n > n1 and g2(n) ≤ c2f2(n) for n > n2,

then g1(n)g2(n) ≤ c1c2︸︷︷︸
c

f1(n)f2(n) for n > max{n1, n2}︸ ︷︷ ︸
n0

.

11 / 13



Outline Time complexity Big-Oh rules Examples

Limit rule

Big-Oh: The Limit Rule

Suppose the ratio’s limit lim
n→∞

f(n)
g(n) = L exists (may be infinite, ∞).

Then


if L = 0 then f ∈ O(g)
if 0 < L <∞ then f ∈ Θ(g)
if L =∞ then f ∈ Ω(g)

When f and g are positive and differentiable functions for x > 0, but
lim
x→∞

f(x) = lim
x→∞

g(x) =∞ or lim
x→∞

f(x) = lim
x→∞

g(x) = 0, the limit L

can be computed using the standard L’Hopital rule of calculus:

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)

where z′(x) denotes the first derivative of the function z(x).

12 / 13



Outline Time complexity Big-Oh rules Examples

Examples 1.22 and 1.23 (Textbook, p.16)

Example 1.22: Exponential functions grow faster than powers:
nk is O(bn) for all b > 1, n > 1, and k ≥ 0.

Proof: by induction or by the limit rule (the L’Hopital approach):

Successive (k times) differentiation of nk and bn by n:

lim
n→∞

nk

bn = lim
n→∞

knk−1

bn ln b = lim
n→∞

k(k−1)nk−2

bn(ln b)2 = . . . = lim
n→∞

k!
bn(ln b)k

= 0.

Example 1.23: Logarithmic functions grow slower than powers:
logb n is O(nk) for all b > 1, k > 0.

Proof: This is the inverse of the preceding feature.

As a result, log n ∈ O(n) and n log n ∈ O(n2).

logb n is O(log n) for all b > 1 because logb n = logb a× loga n

13 / 13



Outline Time complexity Big-Oh rules Examples

Examples 1.22 and 1.23 (Textbook, p.16)

Example 1.22: Exponential functions grow faster than powers:
nk is O(bn) for all b > 1, n > 1, and k ≥ 0.

Proof: by induction or by the limit rule (the L’Hopital approach):

Successive (k times) differentiation of nk and bn by n:

lim
n→∞

nk

bn = lim
n→∞

knk−1

bn ln b = lim
n→∞

k(k−1)nk−2

bn(ln b)2 = . . . = lim
n→∞

k!
bn(ln b)k

= 0.

Example 1.23: Logarithmic functions grow slower than powers:
logb n is O(nk) for all b > 1, k > 0.

Proof: This is the inverse of the preceding feature.

As a result, log n ∈ O(n) and n log n ∈ O(n2).

logb n is O(log n) for all b > 1 because logb n = logb a× loga n

13 / 13


	Time complexity
	Big-Oh rules
	Scaling
	Transitivity
	Rule of sums
	Rule of products
	Limit rule

	Examples

