Algorithm Analysis

V. Balasubramanian
SSN College of Engineering

S571

Introduction

We should explain, before proceeding, that it is not
our object to consider this programme with reference
to the actual arrangement of the data on the
Variables of the engine, but simply as an abstract
question of the nature and number of the operations
required to be perfomed during its complete solution.
Ada Augusta Byron King, Countess of Lovelace

(1843)

S571

Why Study Algorithms?

e An algorithm is a well-defined set of
rules for solving a computational
problem.

e For ex:

—given a list of numbers, rearrange them
into sorted order;

— given a road network, an origin, and a
destination, compute the shortest path

from the origin to the destinatks's”

Why Study Algorithms?

e Given a set of tasks with deadlines,
determine whether or not it is possible to
complete all the tasks by their deadlines.

S571

Why Study Algorithms?

e important for all other branches of
computer science.

— routing in communication networks
piggybacks on classical shortest-path
algorithms;

- the effectiveness of public-key
cryptography rests on that of number-
theoretic algorithms;

S571

Why Study Algorithms?

— computer graphics needs the
computational primitives supplied by
geometric algorithms;

— database indices rely on balanced
search tree data structures;

— computational biology uses dynamic
programming algorithms to measure
genome similarity

S571

Why Study Algorithms?

e plays a key role in modern technological

iInnovation

— “Everyone knows Moore’s Law - a prediction made in
1965 by Intel co-founder Gordon Moore that the density
of transistors in integrated circuits would continue to
double every 1 to 2 years....in many areas, performance
gains due to improvements in algorithms have vastly
exceeded even the dramatic performance gains due to

increased processor speed.”

S571

Algorithm Designer’s Mantra

e "Perhaps the most important
principle for the good algorithm
designer is to refuse to be content.” -
Aho, Hopcroft, and Ullman

S571

1 28405

1 el

] [ee] O

dimno =

"I'"':"’{"*"""']li"g'-;i'-'fﬂ

HAN

200

1
aan

1
Bon

1
i

1
1oon 181

140

Algorithms

e Fast Algorithm: worst case running
time grows slowly with input size.

DAA Course

e OBJECTIVES:

e The student should be made to:
— Learn the algorithm analysis techniques.

- Become familiar with the different
algorithm design techniques.

— Understand the limitations of Algorithm
power

S571

OUTCOMES

- At the end of the course, the student
should be able to:

— Design algorithms for various computing
problems.

— Analyze the time and space complexity
of algorithms.

— Critically analyze the different algorithm
design techniques for a given problem.

— Modify existing algorithms to improve

efficiency. ssn

Analysis of algorithms

e [ssues:
— correctness
- time efficiency
— space efficiency
— optimality

e Approaches:
— theoretical analysis
— empirical analysis

Theoretical analysis of time
efficiency

Time efficiency is analyzed by
determining the number of
repetitions of the basic operation as
a function of input size

e Basic operation: the operation that
contributes most towards the
running time of the algorithm

S571

Contd...

Input size

T(n)/copC)

running time executlon time v\\Iumber of times

for basic operation basic operation is
executed

S571

Input size and basic operation

in a list of n items

items, i.e. n

examples
Problem Input size measure | Basic operation
Searching for key | Number of list’s

Key comparison

Multiplication of
two matrices

Matrix dimensions
or total number of
elements

Multiplication of
two numbers

Checking primality
of a given integer n

n’‘size = number of
digits (in binary
representation)

Division

Typical graph
problem

#vertices and/or
edges

Visiting a vertex
or traversing an
edge

S571

Empirical analysis of time
efficiency
e Select a specific (typical) sample of
iInputs

e Use physical unit of time (e.qg.,
milliseconds) or Count actual number
of basic operation’s executions

e Analyze the empirical data

S571

General Plan for Nonrecursive
Algorithms
e Decide on parameter n indicating
input size
e Identify algorithm’s basic operation

e Determine worst, average, and best
cases for input of size n

e Set up a sum for the number of
times the basic operation is executed

S571

Contd...

e Check whether the number of times
the basic operation is executed
depends only on the size of an input.
If it also depends on some additional
property, the worst-case, average-
case, and, if necessary, best-case
efficiencies have to be investigated
separately.

S571

Important Summations

[*+] =

il
I=1+1+---+1=u—1+1{l, uare integer limits, | < u); E]=|‘i!
= a—1+] times =l

Iy 15
p f=|+]+...+ﬂ=n[n:|--:l-_.:.:n;

= =

4 A s - Ihi2a + 1 l 4
3 7,) ...+n‘=nin+}i 1

k‘
III
+
b
4

& 3

tions
portant Summa
Im

S T
l "'+”tak+1
“ it=1t+2% 4
4 i

A+l
5

2+l _ g
2
Lm £ 1 E
I.—
“ ‘=1+a+---+a —
=, :E%::
|

|.-I+E
L A2" =in — 1)2
2-224 ...
Eﬂ: l =1-24+2-2
i —

.

SH71

Sequential Search

ALGORITHM SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
//Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
/! or —1 if there are no matching elements
i <0
while i < n and A[i] # K do
i <1+ 1
ifi <nreturni
else return —1

SH71

Analysis

e Worst case : n comparisons
e Best case: 1
e Average case

Coem=[1-242. 24 i By g . Blyn.a-p
) Fl n n i

=E[1+E+---—|—.!'+---+n]+n[l—pj
fl

pin+1)

_pn(n+1)
n

+n(l — p)=

+ nil — p).

S571

MaxElement

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton —1do

if A[i] > maxval

maxval < Ali]

return maxval

S571

Analysis

e Two Basic Operation:
— Comparison and assignment
— Comparison is done always.

e the comparison to be the algorithm’s
basic operation.

e The number of comparisons will be
the same for all arrays of size n;

e Every Case Time complexity.

S571

Unique Elements

ALGORITHM UnigueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
/l and “false” otherwise
fori < Oton —2do

for j < i+1ton—1do

if A[i]= A[/] return false

return true

S571

Analysis

e Input Size: number of elements in
the array n.

e Basic Operation: Since the innermost
loop contains a single operation (the
comparison of two elements

S571

Analysis

e worst-case: Inputs for which the
algorithm does not exit the loop
prematurely / arrays with no equal
elements and arrays in which the last
two elements are the only pair of
equal elements.

S571

Analysis

n-2 n-1 n-2 n—2
CiseX) = Z Z 1= Z[(n -D=-(@+D+1]= Z(n -1-=1i)
’—0] =i+1 i i=l)
—Z(n——l)—ZI—(n—l)Zl— 2)("_1)
i=() i
5 —2 -1 -1 |
=n-1)— o)2(,') = i 5 L A znz € (~)(nz).
We also could have computed the sum) _()(" — 1 — i) faster as follows:
n—2 - l
Z(n—l—i)=(n— HD+n-2)+---+1= ("_2)".
i=l

4 |

Matrix Multiplication

ALGORITHM MatrixMultiplication(A[0.n — 1, 0..n — 1], B[0..n — 1, 0.n — 1])

//Multiplies two n-by-n matrices by the definition-based algorithm
//Tnput: Two n-by-n matrices A and B
//Output: Matrix C = AB
fori <~ 0Oton —1do
forj <0ton—1do
Cli, j] < 0.0
fork < 0Oton 1do
Cli, j] < Cli, j1+ Ali, k] = Blk, j]

return C

SH71

Analysis

e Input Size: Matrix order n.

e Basic Operation: There are two
arithmetical operations in the
innermost loop here—multiplication
and addition.

e No additional property, hence every
case time complexity

S571

Analysis

n—1 n-1 n-1

Mm=Y Y Y1

n—1 n—=1 n-1 n—1 n—1 rnm—1

Mn) ZZZI—ZZH—ZH'—H

i=0 j=0 k=0 i=l j=l i=(

S571

Decimal to Binary

ALGORITHM Binary(n)
/[Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation
count < 1
while » > 1 do
count <— count + 1
n<—|n/2]
return count

S571

Analysis

e Input Size: No of Bits to store the
number.
e Basic operation: Division

e Since the value of n is about halved
on each repetition of the loop, the
answer should be about log, n

S571

Exercise Problems

el +3+5+7+...+...+999

500 500 500
1. a. 143454744999 = 3 (2i-1) = 3 2i-Y 1 = 23002301 5 — 250, 000.
i=1 i=1 i=1

S571

Exercise problem

b. 2+4+8+16+---+1024
c. Y d. Y e. Y Ji(i+1)
LYy ¥ g v i b Y 1/iG+)

SH71

Solution

10 10
b. 244+8416+4...+1,024= 3 2 =Y 20— 1= (21" — 1) — 1 = 2,046.
i=10

i=1

(Or by using the formula for the sum of the geometric series with a = 2,

41

g=2,andn=9: ag—l 22;'%11 = 2,046.)

q
n+1
c. Y 1=(n+1)—-3+1l=n—1L1
=3
N nil—:lz B fﬂil—:lE B Z P (n4+1) ﬂ—|—2] 3= n2 gn—aii
i i=()
n n—1 n—1
e. Z i(i+1)= S (2+i)= 3 2+ Z i (n— 1)6(2n D 21)1,1,
=0 =0 1=0 i=0
{ﬂ-z—l]n.

f |

jzl J= j:ﬂ

8 Zn: Zn: ?rj' — n 7 i] = i in.(n.—H) _ n(n+1) Z _ (n+1) n(n+1)
i=1j=1 i=1 j=1 = 2 2~ 2 3
n-(n+1)-

Exercise

ALGORITHM Mystery(n)
[{Input: A nonnegative integer n

S0

fori — ltondo
S«— 8S41i=*i

return S

a. What does this algorithm compute?

b. What is its basic operation?

¢. How many times is the basic operation executed?
d. What is the efficiency class of this algorithm?

e. Suggest an improvement, or a better algorithm altogether, and indicate its
efficiency class. If you cannot do it, try to prove that, in fact, it cannot be

.

done.

Solution

e [t computes i?
e Basic Operation: Multiplication
e M(Nn) = n

Exercise Problem

ALGORITHM Secret(A[0..n — 1])
/[Input: An array A[0..n — 1] of n real numbers
minval « A[0]. maxval «— A[0]
fori < lton — ldo

if Ali] < minval
minval «— Ali]
if Ali] = maxval
maxval « Ali]
return maxval — minval

Solution

a. Computes the range, i.e., the difference between the array’s largest and
smallest elements.

b. An element comparison.

c. C(n)= nil 2=2(n—1).

i=1

d. O(n).

e. An obvious improvement for some inputs (but not for the worst case)

f |

is to replace the two if-statements by the following one:

Plan for Analysis of Recursive
Algorithms

e Decide on a parameter indicating an input’s size.
e Identify the algorithm’s basic operation.

e Check whether the number of times the basic op. is
executed may vary on different inputs of the same
size.

e Set up a recurrence relation with an appropriate
initial condition expressing the number of times the
basic op. is executed.

e Solve the recurrence (or, at the very least, establish
its solution’s order of growth) by backward
substitutions or another method.

S571

Factorial

ALGORITHM F(n)

/[Computes n! recursively
//Input: A nonnegative integer n
//Output: The value of n!

if » =0 return 1

elsereturn F(n — 1) xn

S571

Analysis

e Input Size: N bit representation
e Basic Operation: Multiplication

Miny)=Min-=1) + 1 form = 0.
s

to compute ult p]
Fiim—1) by »

e Basis condition: M(0) = 0 No

S571

multiplication is required.

Backward Substitution

Min)=Min-11+1 substitute Min —=) =M(n - 21+ 1
=[Mn-2)+1]+1=M(n -2)+2 substitute M(n —2)=M(n -3)+1
=[Min-=3)+1]+2=M(n-3)+3.

Mimy=Mn-1)+1=---=Mn-i)+i=---=M(n—n)+n=n.

SH71

FIGURE 2.4 Recursive solution to the Tower of Hanoi puzzle

Analysis

Mmi=Mn-1+14+Mn-1) forn=1

Mny=2M(n-1)+1 form=1,
M(l)=1.

Min)=2M(n-1+1 sub. Min — Hh=2M(n-2)+1
=22Mn —2) +1]+1=2>M(n -2)+2+1 sub. M(n —2)=2M(n —3) + 1
=22M(n =3+ 1]+241=2Mn-3H+22+2+1.

M) =2Mn-D+2"14+22 .. 424 1=2Mmn-i)+2 — 1.

M) =2""Mmn—n-1n+22"1-1

=2 Iy + 2 1=l =2 1. ssn

Decimal to Binary digits

ALGORITHM BinRec(n)

/Mnput: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation
if n = 1return 1

else return BinRec(|n/2]) + 1

SH71

Analysis

e Input Size: No of bits

e Basic operation: additions made in
computing BinRec(n/2) plus one
more addition

Any=A(|n/2])+1 forn=1.

A(l)=0.

S571

Smoothness rule

A2 =A2*H+1 fork =0,
A2% =0.
Now backward substitutions encounter no problems:
ACH=a2H+1 substitute A(25 1) = 42" %) +1
=[A2*) +1]+1=42" %) +2 substitute A" %) = 42") +1
=[A2") +1]+2=a2") +3

= A2 +i
=A2" M +k
Thus, we end up with
A2 =A) +k =k,
or, after returning to the original variable n = 2* and hence k = log, n,

A(n) =log, n € B(log n).

Examples

Solve the following recurrence relations.

a. xin)=xin=-D+5forn=1, x(1h)=0

b. xiny=3xin=1) forn=1, x(1)=4

c. xiny=xn—1+n forn=0, x(0)=0

d. x(n)=x(n/2)4+n forn =1, x(1)=1 (solve for n = 2¥)
e. xiny=x(n/3)+1 forn=1x(1)=1 (solve for n = 3%)

S571

Solution

rn) = xz(n—1)+5
z(n —2)+5]+5=x(n—2)+5-2
= [z(n—3)+5]+5-2=2(n—3)+5-3

= z(n—1)+5-1

= z(1)+5-(n—1)=5(n—1).

S571

Solution

) = 3z(n—1)
= 3[3z(n
= 32 [33(:(9'1_ -
— “e e : 3)]) 33Jm?(1 : 2)
= 3'z(n —1) -

_ 3n-—1
(1) =431

S571

Solution

rn—i)+n—i+1)+(n—i+2)+..+n

z(0)+1+2+...+n=

Solution

z(2F) = T(Qk_l)—l-gk
[T(Zk 3)_|_2f4: 2]_|_2k 1_|_2k_3,(2k 3)_|_2f1: Q_I_Qk 1_|_2k

— (gk B QL okt L ok

r(2F Ry ol 122 4 42k =142V 4224 42K

SH71

— oktl_ 1 _9.9F 1 _—9p 1.

Solution

x(3F) = z(3F 1) +1
= [z@") +1+1=2(3"%) +2
— [#(3*3) + 1] +2 = 2(3*3) + 3

— (3" 4+

= z(3* M4+ k=z1)+k=1+logsn.

S571

Exercise Probelm

ALGORITHM S(n)

[{Input: A positive integer n
[{Output: The sum of the first n cubes
if n = 1 return 1

else return Sin — 1)+ n+n +n

a. Set up and solve a recurrence relation for the number of times the algo-
rithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward nonrecursive
algorithm for computing this sum?

f |

Analysis

e Basic operation: Multiplication
M(n) = M(n-1) + 2
M(1) = 0.

M(n) M(n—1)+2
(M(n—2)+2]|+2=M(n—2)+2+2

(M(n—3)+2]4+2+2=M(n—3)+2+2+2

M(n—1)+2i

ﬂf(l) +2(n—1)=2(n—1).

S571

Analysis

e Straightforward:
e M(n) = sum of (i=2ton) 2 =2(n-1)

Exercise Problem

ALGORITHM ¢Qin)

[Mnput: A positive integer n
if n =1 return 1
else return Q(n — 1) +2%n — 1

a. Setup a recurrence relation for this function’s values and solve it to deter-
mine what this algorithm computes.

b. Setup a recurrence relation for the number of multiplications made by this
algorithm and solve it.

¢. Setup arecurrence relation for the number of additions/subtractions made
by this algorithm and solve it.

Solution

Qn)=Qn—1)+2n—1 forn>1, Q(1)=1.
Qn—1)+2n—1=(n—1)"+2n—-1=n>

M(n)=M(n—1)+1 forn>1, M(1)=0.

3 includes n-1, adding 2n, -

| SH71

Fibonacci Series

ALGORITHM F(n)

//Computes the nth Fibonacci number recursively by using its definition
//Input: A nonnegative integer »n

//Output: The nth Fibonacci number

if » <1 returnn

elsereturn F(n — 1) + F(n — 2)

S571

Iterative algorithm

ALGORITHM Fib(n)

//Computes the nth Fibonacci number iteratively by using its definition
//Input: A nonnegative integer n
//Output: The nth Fibonacci number
Fl0] «0; F[1] <1
fori < 2tondo
Fli] < F[i = 1]+ F[i —2]
return F[n]

SH71

Analysis

e Homogeneous linear recurrence
relation.

