
Algorithm Analysis

V. Balasubramanian

SSN College of Engineering

Introduction

Why Study Algorithms?

• An algorithm is a well-defined set of
rules for solving a computational
problem.

• For ex:

–given a list of numbers, rearrange them
into sorted order;

–given a road network, an origin, and a
destination, compute the shortest path
from the origin to the destination;

Why Study Algorithms?

• Given a set of tasks with deadlines,
determine whether or not it is possible to
complete all the tasks by their deadlines.

Why Study Algorithms?

• important for all other branches of
computer science.

– routing in communication networks
piggybacks on classical shortest-path
algorithms;

– the effectiveness of public-key
cryptography rests on that of number-
theoretic algorithms;

Why Study Algorithms?

–computer graphics needs the
computational primitives supplied by
geometric algorithms;

–database indices rely on balanced
search tree data structures;

–computational biology uses dynamic
programming algorithms to measure
genome similarity

Why Study Algorithms?

• plays a key role in modern technological
innovation
– “Everyone knows Moore’s Law – a prediction made in

1965 by Intel co-founder Gordon Moore that the density
of transistors in integrated circuits would continue to
double every 1 to 2 years….in many areas, performance
gains due to improvements in algorithms have vastly
exceeded even the dramatic performance gains due to
increased processor speed.”

Algorithm Designer’s Mantra

• “Perhaps the most important
principle for the good algorithm
designer is to refuse to be content.” -
Aho, Hopcroft, and Ullman

Example

Algorithms

• Fast Algorithm: worst case running
time grows slowly with input size.

DAA Course

• OBJECTIVES:

• The student should be made to:

–Learn the algorithm analysis techniques.

–Become familiar with the different
algorithm design techniques.

–Understand the limitations of Algorithm
power

OUTCOMES

–At the end of the course, the student
should be able to:

–Design algorithms for various computing
problems.

–Analyze the time and space complexity
of algorithms.

–Critically analyze the different algorithm
design techniques for a given problem.

–Modify existing algorithms to improve
efficiency.

Analysis of algorithms

• Issues:

– correctness

– time efficiency

– space efficiency

– optimality

• Approaches:

– theoretical analysis

– empirical analysis

Theoretical analysis of time
efficiency

Time efficiency is analyzed by
determining the number of
repetitions of the basic operation as
a function of input size

• Basic operation: the operation that
contributes most towards the
running time of the algorithm

Contd…

T(n) ≈ copC(n)

running time execution time

for basic operation

Number of times

basic operation is

executed

input size

Input size and basic operation
examples

Problem Input size measure Basic operation

Searching for key
in a list of n items

Number of list’s
items, i.e. n

Key comparison

Multiplication of
two matrices

Matrix dimensions
or total number of
elements

Multiplication of
two numbers

Checking primality
of a given integer n

n’size = number of
digits (in binary
representation)

Division

Typical graph
problem

#vertices and/or
edges

Visiting a vertex
or traversing an
edge

Empirical analysis of time
efficiency

• Select a specific (typical) sample of
inputs

• Use physical unit of time (e.g.,
milliseconds) or Count actual number
of basic operation’s executions

• Analyze the empirical data

General Plan for Nonrecursive
Algorithms

• Decide on parameter n indicating
input size

• Identify algorithm’s basic operation
• Determine worst, average, and best

cases for input of size n
• Set up a sum for the number of

times the basic operation is executed

Contd…

• Check whether the number of times
the basic operation is executed
depends only on the size of an input.
If it also depends on some additional
property, the worst-case, average-
case, and, if necessary, best-case
efficiencies have to be investigated
separately.

Important Summations

Important Summations

Sequential Search

Analysis

• Worst case : n comparisons

• Best case: 1

• Average case

MaxElement

Analysis

• Two Basic Operation:

–Comparison and assignment

–Comparison is done always.

• the comparison to be the algorithm’s
basic operation.

• The number of comparisons will be
the same for all arrays of size n;

• Every Case Time complexity.

Unique Elements

Analysis

• Input Size: number of elements in
the array n.

• Basic Operation: Since the innermost
loop contains a single operation (the
comparison of two elements

Analysis

• worst-case: Inputs for which the
algorithm does not exit the loop
prematurely / arrays with no equal
elements and arrays in which the last
two elements are the only pair of
equal elements.

Analysis

Matrix Multiplication

Analysis

• Input Size: Matrix order n.

• Basic Operation: There are two
arithmetical operations in the
innermost loop here—multiplication
and addition.

• No additional property, hence every
case time complexity

Analysis

Decimal to Binary

Analysis

• Input Size: No of Bits to store the
number.

• Basic operation: Division

• Since the value of n is about halved
on each repetition of the loop, the
answer should be about log2 n

Exercise Problems

• 1 + 3 + 5 + 7 + ...+…+ 999

Exercise problem

Solution

Contd…

Exercise

Solution

• It computes i2

• Basic Operation: Multiplication

• M(n) = n

Exercise Problem

Solution

Plan for Analysis of Recursive
Algorithms

• Decide on a parameter indicating an input’s size.

• Identify the algorithm’s basic operation.

• Check whether the number of times the basic op. is
executed may vary on different inputs of the same
size.

• Set up a recurrence relation with an appropriate
initial condition expressing the number of times the
basic op. is executed.

• Solve the recurrence (or, at the very least, establish
its solution’s order of growth) by backward
substitutions or another method.

Factorial

Analysis

• Input Size: N bit representation

• Basic Operation: Multiplication

• Basis condition: M(0) = 0 No
multiplication is required.

Backward Substitution

Slide 2- 49

Analysis

Decimal to Binary digits

Analysis

• Input Size: No of bits

• Basic operation: additions made in
computing BinRec(n/2) plus one
more addition

Smoothness rule

Examples

Solution

Solution

Solution

Solution

Solution

Exercise Probelm

Analysis

• Basic operation: Multiplication

M(n) = M(n-1) + 2

M(1) = 0.

Analysis

• Straightforward:

• M(n) = sum of (i=2 to n) 2 = 2(n-1)

Exercise Problem

Solution

3 includes n-1, adding 2n, -

1

Fibonacci Series

Iterative algorithm

Analysis

• Homogeneous linear recurrence
relation.

