CSE 513
Introduction to Operating Systems

Class 3 - Interprocesses Communication &
Synchronization

Jonathan Walpole
Dept. of Comp. Sci. and Eng.
Oregon Health and Science University

Race conditions

o What Is a race condition?

two or more processes have an inconsistent view of a
shared memory region (l.e., a variable)

a Why do race conditions occur?

values of memory locations replicated in registers during
execution

context switches at arbitrary times during execution
processes can see “stale” memory values in registers

a What solutions can we apply?

prevent context switches by preventing interrupts?

make processes coordinate with each other to ensure
mutual exclusion in accessing “critical sections” of code

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Counter increment race condition

Spooler

directory
4 abc out=4
6 prog.n
7 in=7

Incrementing a counter (load, increment, store)
Context switch can occur after load and before increment!

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Mutual exclusion conditions

a No two processes simultaneously in critical region
a No assumptions made about speeds or numbers of CPUs

a No process running outside its critical region may block
another process

a No process must wait forever to enter its critical region

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Critical regions with mutual exclusion

A enters critical region

/ A leaves critical region

Process A | I
| I I |
| I I |
| | Battemptsto B enters : B leaves
| | enter critical I critical region | critical region
region
| I I |
| I
Process B
| I Y,
| | S | !
I I B blocked I I
T, T T, Ty

Time =

Mutual exclusion using critical regions

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

How can we implement mutual exclusion?

o What about using a binary “lock” variable in

memory and having processes check it and set it
before entry to critical regions?

o Many computers have some limited hardware
support for setting locks

+ “Atomic” Test and Set Lock instruction
« “Atomic” compare and swap operation

o Solves the problem of
+ EXpressing intention to enter C.S.
» Actually setting a lock to prevent concurrent access

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Test and Set Lock

o Test-and-set does two things atomically:
» Test alock (whose value is returned)
» Set the lock

1. extract va‘lue/ lock = { TRUE , FALSE}

Test var
2. Set TRUE

o Lock obtained when the return value is FALSE

o If TRUE, someone already had the lock (and
still has It)

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Test and Set Lock

FAL SE
L ock

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Test and Set Lock

FAL SE
L ock

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Test and Set Lock

FALSE = Lock Available!!

@ FALSE

L ock

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

10

Test and Set Lock

¢,
@ FALSE

TRUE
L ock

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Test and Set Lock

¢,
@ FALSE

TRUE
L ock

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

12

Vi

Test and Set Lock

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

13

Vi

Test and Set Lock

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

14

Vi

Test and Set Lock

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

15

Test and Set Lock

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

16

Test and Set Lock

(2

TRUE | | FASE

FAL SE
L ock

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

@

17

Test and Set Lock

(2

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

18

Test and Set Lock

5
@ TRUE

TRUE

TRUE
TRUE < @
TRUE

L ock

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Vi

Critical section entry code with TSL

r epeat
whi | e(TSL(1 ock))
no- op;

Lock = FALSE;

1

2

3

4 critical section
5

6 renni nder section
7

until FALSE

1

r epeat
whi | e(TSL(1 ock))
no- op;
critical section
Lock = FALSE;
remal nder secti on
unti|l FALSE

Guaranteed that only one processreturnswith FAL SE
when alock isreturned to the system and othersare

waiting to act on the lock

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

20

Vi

Generalized primitives for critical sections

a Thus far, the solutions have used busy waiting

. a process consumes CPU resources to evaluate when a
lock becomes free

. on a single CPU system busy waiting prevents the lock

holder from running, completing the critical section and
releasing the lock!

. 1t would be better to block instead of busy wait (on a
single CPU system)

a Blocking synchronization primitives
. Sleep - allows a process to sleep on a condition

. wakeup - allows a process to signal another process
that a condition it was waiting on is true

 but how can these be implemented?

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

21

Vi

Blocking synchronization primitives

a Sleep and wakeup are system calls

- OS can implement them by managing a data structure that
records who is blocked and on what condition

« but how can the OS access these data structures
atomically?

a Concurrency in the OS: context switches and interrupts

. the OS can arrange not to perform a context switch while
manipulating its data structures for sleep and wakeup

- but what about interrupts?

« what If interrupt handlers manipulate the sleep and wakeup
data structures? What if they need synchronization?

. how can the OS synchronize access to its own critical
sections?

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

22

Vi

Disabling interrupts

a Disabling interrupts in the OS vs disabling interrupts in
user processes

- why not allow user processes to disable interrupts?
. 1S It ok to disable interrupts in the OS?
. what precautions should you take?

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

23

Generic synchronization problems

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Producer/Consumer with busy waiting

process producer{
whi l e(1){
/ | produce char c
whi | e (count ==n)

no_op;
buf [I nP] = c;
INnP = InP + 1 nod n
count ++;
n-1 0
2
3
% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

process consuner {
whi | e(1){

no_op;

QutP = QutP
count - -;

}

whi | e (count ==0)

c = buf[QutP];

+ 1 nmod n

/| consune char

d obal vari abl es:
char buf[n]
int I nP, QutP;
| nt count

/1 [0-n-1]

25

Problems with busy waiting solution

o Producer and consumer can’'t run at the same time

a Count variable can be corrupted if context switch occurs
at the wrong time

a Bugs difficult to track down

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY 26

Producer/Consumer with blocking

process producer{

Vi

e while(l){
. / | produce char c
. I f (count==n)
. sleep(full);
. buf [I nP] = c;
. InP = InP + 1 nod n
. count ++;
. I f (count == 1)
° wakeup(enpty);
’ }
}

n-1

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

process consumer {

whi l e(1){

whi | e (count ==0)
sl eep(enpty);

c = buf[QutP];

QutP = QutP + 1 nod n

count - -;

I f (count == n-1)
wakeup(full);

/I consunme char

}

obal

vari abl es:

char buf[n]

int I nP, QutP;

I nt count

/1 [0-n-1]

27

Vi

Problems with the blocking solution

a

a

Count variable can be corrupted
Increments or decrements may be lost
Both processes may sleep forever
Buffer contents may be over-written

Code that manipulates count must be made a critical
section and protected using mutual exclusion

Sleep and wakeup must be implemented as system calls

OS must use synchronization mechanisms (TSL or
interrupt disabling) in its implementation of sleep and
wake-up ... 1.e., the critical sections of OS code that
manipulate sleep/wakeup data structures must be
protected using mutual exclusion

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

28

Vi

Semaphores

o An abstract data type that can be used for
condition synchronization and mutual exclusion

a Integer variable with two operations:
+ down (sema_var)
decrement sema_var by 1, if possible
If not possible, “wait” until possible
» up(sema_var)
Increment sema_var by 1

o Both up() and down() are assumed to be atomic
» made to be atomic by OS implementation

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

29

Semaphores

o There are multiple names for semaphores
» Down(S), wait(S), P(S)
« Up(S), signal(S), V(S)

o Semaphore implementations

» Binary semaphores (mutex)
e support mutual exclusion (lock either set or free)

» Counting semaphores

e support multiple values for more sophisticated
coordination and controlled concurrent access
among processes

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Using Semaphores for Mutex

semaphore nutex =1

1 repeat 1 repeat

2 down(nut ex) ; 2 down(nut ex) ;

3 critical section 3 critical section
4 up(nmutex); 4 up(nmutex);

5 renmai nder section 5 renmai nder section
6 until FALSE 6 until FALSE

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

31

Using Semaphores for Mutex

semaphore nutex = 0

1 repeat 1 repeat

2 down(nmutex); 2 down(mut ex) ;

3 critical section 3 critical section
4 up(nmutex); 4 up(nmutex);

5 renmai nder section 5 renmai nder section
6 until FALSE 6 until FALSE

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

32

Using Semaphores for Mutex

semaphore nutex = 0

1 repeat
down(nutex); ¢

critical section

2

3

4 up(nutex);
5 remai nder section
6

until FALSE

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

r epeat

down(nut ex) ;

v

critical section

up(mut ex) ;

remai nder section

unti |

FALSE

Using Semaphores for Mutex

semaphore nutex =1

1 repeat 1 repeat

2 down(nmutex); 2 down(mut ex) ; v
3 critical section 3 critical section
4 up(nutex): il 4 up(nutex):

5 renmai nder section 5 renmai nder section
6 until FALSE 6 until FALSE

v

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Using Semaphores for Mutex

semaphore nutex = 1 Check again to seeif it
can be decremented

1 repeat 1 repeat

2 down(nmutex); 2 down(mut ex) ; v >

3 critical section 3 critical section

4 up(nutex): il 4 up(nutex):

5 renmai nder section 5 renmai nder section

6 until FALSE 6 until FALSE

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

In class exercise...

o Implement producer consumer solution:

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

36

Counting semaphores In producer/consumer

d obal vari abl es
semaphore full buffs = O;
semaphore enpty buffs = n;
char buff[n];
int InP, QutP;

process producer{ process consuner{

e while(1){ e while(1){

. [I produce char c . down(ful | _buffs);

. down(enpty buffs); . c = buf[QutP];

. buf [I nP] = c; . QutP = QutP + 1 nod n
. InP = InP + 1 nod n . up(enpty buffs);

’ up(ful | _bufts); . / / consume char

.) . }

} }

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Vi

Implementing semaphores

o Generally, the hardware has some simple
mechanism to support semaphores
+ Control over interrupts (almost all)
» Special atomic instructions in 1SA
e test and set lock
e compare and swap
a Spin-Locks vs. Blocking
» Spin-locks (busy waiting)
e may waste a lot of cycles on uni-processors
+ Blocking
e may waste a lot of cycles on multi-processors

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Implementing semphores

a Blocking
struct senmaphor e{
I nt val ;
list L;

}

Down(senmaphore sen
DI SABLE | NTS
semval - -;
I f (semval < 0){
add proc to semL
bl ock(proc);

}
ENABLE_I NTS

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Up(semaphore sem
DI SABLE | NTS
sem val ++;
I f (semval <= 0) {
proc = renove next
proc fromsemL
wakeup(proc) ;

}
ENABLE | NTS

39

Semaphores in UNIX

o User-accessible semaphores in UNIX are
somewhat complex

+ each up and down operation is done atomically on an
“array” of semaphores.

+» Semaphores are allocated by (and in) the operating
system (number based on configuration parameters).

» Semaphores in UNIX ARE A SHARED RESOURCE
AMONG EVERYONE (most implementations are).

+ REMOVE your semaphores after you are done with
them.

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Typical usage

mai n() {
I nt sem.d;
sem i d = NewSemaphore(1);
Down(sem.i d);
[CRI TI CAL SECTI ON]
Up (sem.id);

FreeSemaphore(sem.id);

}

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Vi

Managing your UNIX semaphores

a Listing currently allocated ipc resources
| pCcs
o Removing semaphores

| pcrm -s <sem nunber >

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

42

Classical IPC problems

o There are a number of “classic” IPC problems
Including:
. Producer / Consumer synchronization

» The dining philosophers problem
» The sleeping barber problem
» The readers and writers problem

. Counting semaphores out of binary semaphores

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Dining Philosophers Problem

a Five philosophers sit at a table

o Between each philosopher there is one chopstick

o Philosophers:

whi | e(! dead) {
Thi nk(har d) ;
Grab first chopsti ck;
Grab second chopsti ck;
Eat ;
Put first chopstick back;
Put second chopstick back;

}
o Why do they need to synchronize?
o How should they do it?

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Dining philospher’s solution???

a Why doesn’'t this work?

#define N 5
Phi | osopher ()
{

whi | e(! dead) {
Thi nk(hard) ;
take fork(i);
take fork((i+1)% N);
Eat (al ot);
put fork(i);
put fork((i+1)% N);
}

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Dining philospher’s solution (part 1)

#define N 5
#define LEFT (i+N—-1)%N
#define RIGHT (i+1)%N

#define THINKING 0
#define HUNGRY 1
#define EATING 2
typedef int semaphore;
int state[N];

semaphore mutex = 1;

semaphore s[N];

void philosopher(int i)

{
while (TRUE) {
think():
take forks(i);
eat();
put_ forks(i);
}
1

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

/* number of philosophers */

/* number of i's left neighbor */

/* number of i's right neighbor */

/* philosopher is thinking */

/* philosopher is trying to get forks */

/* philosopher is eating */

[* semaphores are a special kind of int */
/* array to keep track of everyone’s state */
/* mutual exclusion for critical regions */

/* one semaphore per philosopher */

/* i: philosopher number, from 0 to N-1 */

/* repeat forever */

/* philosopher is thinking */

/* acquire two forks or block */
[* yum-yum, spaghetti */

/* put both forks back on table */

Dining philospher’s solution (part 2)

void take_forks(int i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&s[i]); /* block if forks were not acquired */
}
void put_forks(i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* 1: philosopher number, from 0 to N-1 */

{
if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] = EATING) {

statei] = EATING;
up(&si]):
}
% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Dining Philosophers

a Is this correct?
o What does it mean for 1t to be correct?
a Is there an easier way?

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Sleeping Barber Problem

49

Sleeping barber

o Barber

. 1T there are people waiting for a hair cut bring them to
the barber chair, and give them a haircut

. else go to sleep

o Customer:
- 1T the waiting chairs are all full, then leave store.

. IF someone is getting a haircut, then wait for the barber
to free up by sitting in a chair

. IF the barber is sleeping, then wake him up and get a
haircut

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Solution to the sleeping barber problem

#define CHAIRS 5
typedef int semaphore;

semaphore customers = 0;
semaphore barbers = 0:
semaphore mutex = 1;

int waiting = 0:

void barber(void)
while (TRUE) {

down(&customers);
down(&mutex);

waiting = waiting - 1,

upl&barbers);
up(&mutex);
cut_hair).

void customer{void)

downi &mutex);
if {waiting = CHAIRS) {

waiting = waiting + 1;

upi&customers);
up{&mutex);
down{&barbears);
get_haircut({);
}else |
upl&mutex);
}

}

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

I+ # chairs for waiting customers =/
{* use your imagination */

I+ # of customers waiting for service */

/* # of barbers waiting for customers =/

I+ for mutual exclusion */

I+ customers are waiting (not being cut) =/

I go to sleep if # of customers is 0 +/

I* acouire access to 'waiting' +/

i* decrement count of waiting customers +/
i* one barber is now ready to cut hair */

I+ release 'waiting' =/

i+ cut hair {outside critical region) */

i* enter critical region */

{* if there are no free chairs, leave */

I* increment count of waiting customers »/
i wake up barber if necessary */

i* release access to ‘waiting' =/

I go to sleep if # of free barbers is 0 «/

I+ be seated and be serviced *»/

* shop is full; do not wait =/

51

Vi

The readers and writers problem

o Readers and writers want to access a database
o Multiple readers can proceed concurrently

a Writers must synchronize with readers and
other writers

o Maximize concurrency
a Prevent starvation

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

52

One solution to readers and writers

typedef int semaphore; /* use your imagination */

semaphore mutex = 1; /* controls access to rc' */

semaphore db = 1; /> controls access to the database */
intrc = (; * # of processes reading or wanting to =/

void reader(void)

while (TRUE) { * repeat forever */
down(&mutex); * get exclusive access to 'rc' =/
m=rc+1; [+ one reader more now =/
if (rc == 1) down(&dhb); [+ if this is the first reader ... */
up(&mutex); * release exclusive access to rc' */
read_data_base(); /= access the data =/
down{&mutex); * get exclusive access to 'rc’ */
m=rc-1; I+ one reader fewer now =/
if (rc == 0) up(&db); = if this is the last reader ... #/
up(&mutex); '* release exclusive access fo re' */
use data read(); * noncritical region */

void writer(void)

while (TRUE) { * repeat forever */
think_up_data(); * noncritical region =/
down(&db); * get exclusive access */
write_data_base(); * update the data »/
upl&db); /* release exclusive access */

}

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

Counting semaphores

a A binary semaphore can only take on the values
of [0, 1].

o Class exercise: create a counting semaphore
(generalized semaphore that we discussed
previously) using just a binary semaphore!!

% OGI SCHOOL OF SCIENCE & ENGINEERING
7 OREGON HEALTH & SCIENCE UNIVERSITY

Possible solution

Semaphore S1, S2, S3; // Bl NARY!!
int C=N, // Nis # |ocks

down_c(sem {

downB(S3) ;

downB(S1) ; Upag\(,\;?sg) ;

p = C-1; C=2C+ 1;

i f (CTO)){ I f (C<=0) {
upB(S1) ; ,
downB(S2) : ?pB(>
) .

el se { ;pB(Sl),
upB(S1) ;
}

upB(S3) ;

}

% OGI SCHOOL OF SCIENCE & ENGINEERING
d OREGON HEALTH & SCIENCE UNIVERSITY

