
1

CSE 513
Introduction to Operating Systems

Class 3 - Interprocesses Communication &
Synchronization

Jonathan Walpole
Dept. of Comp. Sci. and Eng.

Oregon Health and Science University

2

Race conditions

q What is a race condition?
v two or more processes have an inconsistent view of a

shared memory region (I.e., a variable)

q Why do race conditions occur?
v values of memory locations replicated in registers during

execution
v context switches at arbitrary times during execution
v processes can see “stale” memory values in registers

q What solutions can we apply?
v prevent context switches by preventing interrupts?
v make processes coordinate with each other to ensure

mutual exclusion in accessing “critical sections” of code

3

Counter increment race condition

Incrementing a counter (load, increment, store)
Context switch can occur after load and before increment!

4

Mutual exclusion conditions

q No two processes simultaneously in critical region

q No assumptions made about speeds or numbers of CPUs

q No process running outside its critical region may block
another process

q No process must wait forever to enter its critical region

5

Critical regions with mutual exclusion

Mutual exclusion using critical regions

6

How can we implement mutual exclusion?

q What about using a binary “lock” variable in
memory and having processes check it and set it
before entry to critical regions?

q Many computers have some limited hardware
support for setting locks
v “Atomic” Test and Set Lock instruction
v “Atomic” compare and swap operation

q Solves the problem of
v Expressing intention to enter C.S.
v Actually setting a lock to prevent concurrent access

7

Test and Set Lock

q Test-and-set does two things atomically:
v Test a lock (whose value is returned)
v Set the lock

q Lock obtained when the return value is FALSE
q If TRUE, someone already had the lock (and

still has it)

lock = {TRUE , FALSE}

Test_var

1. extract value

2. Set TRUE

8

Test and Set Lock

FALSE

Lock

9

Test and Set Lock

P1

FALSE

Lock

10

Test and Set Lock

P1

Lock

FALSE

FALSE = Lock Available!!

11

Test and Set Lock

TRUE

Lock

FALSEP1

12

Test and Set Lock

TRUE

Lock

FALSEP1

13

Test and Set Lock

TRUE

Lock

P1 P2 P3

P4

TRUE TRUE
TRUE

TRUE

TRUE

TRUE

14

Test and Set Lock

TRUE

Lock

P1 P2 P3

P4

TRUE TRUE
TRUE

TRUE

TRUE

TRUE

15

Test and Set Lock

TRUE

Lock

P1 P2 P3

P4

TRUE TRUE
TRUE

TRUE

TRUE

TRUE

16

Test and Set Lock

FALSE

Lock

P1 P2 P3

P4

TRUE TRUE
TRUE

TRUE

TRUE

TRUE

17

Test and Set Lock

FALSE

Lock

P1 P2 P3

P4

TRUE FALSE

18

Test and Set Lock

FALSE

Lock

P1 P2 P3

P4

TRUE FALSE

19

Test and Set Lock

TRUE

Lock

P1 P2 P3

P4

TRUE

TRUE

TRUE

TRUE

20

Critical section entry code with TSL

1 repeat
2 while(TSL(lock))
3 no-op;

4 critical section

5 Lock = FALSE;

6 remainder section

7 until FALSE

1 repeat
• while(TSL(lock))
3 no-op;

4 critical section

5 Lock = FALSE;

6 remainder section

7 until FALSE

JI

Guaranteed that only one process returns with FALSE
when a lock is returned to the system and others are
waiting to act on the lock

21

Generalized primitives for critical sections

q Thus far, the solutions have used busy waiting
v a process consumes CPU resources to evaluate when a

lock becomes free
v on a single CPU system busy waiting prevents the lock

holder from running, completing the critical section and
releasing the lock!

v it would be better to block instead of busy wait (on a
single CPU system)

q Blocking synchronization primitives
v sleep – allows a process to sleep on a condition
v wakeup – allows a process to signal another process

that a condition it was waiting on is true
v but how can these be implemented?

22

Blocking synchronization primitives

q Sleep and wakeup are system calls
v OS can implement them by managing a data structure that

records who is blocked and on what condition
v but how can the OS access these data structures

atomically?

q Concurrency in the OS: context switches and interrupts
v the OS can arrange not to perform a context switch while

manipulating its data structures for sleep and wakeup
v but what about interrupts?
v what if interrupt handlers manipulate the sleep and wakeup

data structures? What if they need synchronization?
v how can the OS synchronize access to its own critical

sections?

23

Disabling interrupts

q Disabling interrupts in the OS vs disabling interrupts in
user processes
v why not allow user processes to disable interrupts?
v is it ok to disable interrupts in the OS?
v what precautions should you take?

24

Generic synchronization problems

25

Producer/Consumer with busy waiting

process producer{
while(1){
 //produce char c
 while (count==n)
 no_op;
 buf[InP] = c;
 InP = InP + 1 mod n
 count++;
 }

}

process consumer{
while(1){
 while (count==0)
 no_op;
 c = buf[OutP];
 OutP = OutP + 1 mod n
 count--;
 //consume char
 }

}

0

2

3

n-1

…

Global variables:
 char buf[n]
 int InP, OutP; // [0-n-1]
 int count

26

Problems with busy waiting solution

q Producer and consumer can’t run at the same time
q Count variable can be corrupted if context switch occurs

at the wrong time
q Bugs difficult to track down

27

Producer/Consumer with blocking

process producer{
• while(1){
• //produce char c
• if (count==n)
• sleep(full);
• buf[InP] = c;
• InP = InP + 1 mod n
• count++;
• if (count == 1)
• wakeup(empty);
• }
}

process consumer{
• while(1){
• while (count==0)
• sleep(empty);
• c = buf[OutP];
• OutP = OutP + 1 mod n
• count--;
• if (count == n-1)
• wakeup(full);
• //consume char
• }
}

1

2

3

n-1

…

Global variables:
 char buf[n]
 int InP, OutP; // [0-n-1]
 int count

28

Problems with the blocking solution

q Count variable can be corrupted
q Increments or decrements may be lost
q Both processes may sleep forever
q Buffer contents may be over-written

q Code that manipulates count must be made a critical
section and protected using mutual exclusion

q Sleep and wakeup must be implemented as system calls
q OS must use synchronization mechanisms (TSL or

interrupt disabling) in its implementation of sleep and
wake-up … I.e., the critical sections of OS code that
manipulate sleep/wakeup data structures must be
protected using mutual exclusion

29

Semaphores

q An abstract data type that can be used for
condition synchronization and mutual exclusion

q Integer variable with two operations:
v down (sema_var)

decrement sema_var by 1, if possible
if not possible, “wait” until possible

v up(sema_var)
increment sema_var by 1

q Both up() and down() are assumed to be atomic
v made to be atomic by OS implementation

30

Semaphores

q There are multiple names for semaphores
v Down(S), wait(S), P(S)
v Up(S), signal(S), V(S)

q Semaphore implementations
v Binary semaphores (mutex)

• support mutual exclusion (lock either set or free)

v Counting semaphores
• support multiple values for more sophisticated

coordination and controlled concurrent access
among processes

31

Using Semaphores for Mutex

1 repeat

2 down(mutex);

3 critical section

4 up(mutex);

5 remainder section

6 until FALSE

1 repeat

2 down(mutex);

3 critical section

4 up(mutex);

5 remainder section

6 until FALSE

semaphore mutex = 1

32

Using Semaphores for Mutex

1 repeat

2 down(mutex);

3 critical section

4 up(mutex);

5 remainder section

6 until FALSE

1 repeat

2 down(mutex);

3 critical section

4 up(mutex);

5 remainder section

6 until FALSE

semaphore mutex = 0

33

Using Semaphores for Mutex

1 repeat

2 down(mutex);

3 critical section

4 up(mutex);

5 remainder section

6 until FALSE

1 repeat

2 down(mutex);

3 critical section

4 up(mutex);

5 remainder section

6 until FALSE

semaphore mutex = 0

34

Using Semaphores for Mutex

1 repeat

2 down(mutex);

3 critical section

4 up(mutex);

5 remainder section

6 until FALSE

1 repeat

2 down(mutex);

3 critical section

4 up(mutex);

5 remainder section

6 until FALSE

semaphore mutex = 1

35

Using Semaphores for Mutex

1 repeat

2 down(mutex);

3 critical section

4 up(mutex);

5 remainder section

6 until FALSE

1 repeat

2 down(mutex);

3 critical section

4 up(mutex);

5 remainder section

6 until FALSE

semaphore mutex = 1 Check again to see if it
can be decremented

36

In class exercise…

q Implement producer consumer solution:

37

Counting semaphores in producer/consumer

process producer{
• while(1){
• //produce char c

• down(empty_buffs);
• buf[InP] = c;
• InP = InP + 1 mod n
• up(full_buffs);

• }
}

process consumer{
• while(1){

• down(full_buffs);
• c = buf[OutP];
• OutP = OutP + 1 mod n
• up(empty_buffs);

• //consume char
• }
}

Global variables
 semaphore full_buffs = 0;
 semaphore empty_buffs = n;
 char buff[n];
 int InP, OutP;

38

Implementing semaphores

q Generally, the hardware has some simple
mechanism to support semaphores
v Control over interrupts (almost all)
v Special atomic instructions in ISA

• test and set lock
• compare and swap

q Spin-Locks vs. Blocking
v Spin-locks (busy waiting)

• may waste a lot of cycles on uni-processors
v Blocking

• may waste a lot of cycles on multi-processors

39

Implementing semphores

q Blocking

Up(semaphore sem)
 DISABLE_INTS
 sem.val++;
 if (sem.val <= 0) {
 proc = remove next
 proc from sem.L
 wakeup(proc);
 }
 ENABLE_INTS

struct semaphore{
 int val;
 list L;
 }

Down(semaphore sem)
 DISABLE_INTS
 sem.val--;
 if (sem.val < 0){
 add proc to sem.L
 block(proc);
 }
 ENABLE_INTS

40

Semaphores in UNIX

q User-accessible semaphores in UNIX are
somewhat complex
v each up and down operation is done atomically on an

“array” of semaphores.

q *********WORDS OF WARNING *********
v Semaphores are allocated by (and in) the operating

system (number based on configuration parameters).

v Semaphores in UNIX ARE A SHARED RESOURCE
AMONG EVERYONE (most implementations are).

v REMOVE your semaphores after you are done with
them.

41

Typical usage

main(){
int sem_id;
sem_id = NewSemaphore(1);
...
Down(sem_id);

[CRITICAL SECTION]

Up (sem_id);

...
FreeSemaphore(sem_id);
}

42

Managing your UNIX semaphores

q Listing currently allocated ipc resources

ipcs

q Removing semaphores

ipcrm -s <sem number>

43

Classical IPC problems

q There are a number of “classic” IPC problems
including:
v Producer / Consumer synchronization

v The dining philosophers problem

v The sleeping barber problem

v The readers and writers problem

v Counting semaphores out of binary semaphores

44

Dining Philosophers Problem

q Five philosophers sit at a table

q Between each philosopher there is one chopstick

q Philosophers:

q Why do they need to synchronize?
q How should they do it?

while(!dead){
 Think(hard);
 Grab first chopstick;
 Grab second chopstick;
 Eat;
 Put first chopstick back;
 Put second chopstick back;
 }

45

Dining philospher’s solution???

q Why doesn’t this work?
#define N 5
Philosopher()
{
 while(!dead){
 Think(hard);
 take_fork(i);
 take_fork((i+1)% N);
 Eat(alot);
 put_fork(i);
 put_fork((i+1)% N);
 }
}

46

Dining philospher’s solution (part 1)

47

Dining philospher’s solution (part 2)

48

Dining Philosophers

q Is this correct?
q What does it mean for it to be correct?
q Is there an easier way?

49

Sleeping Barber Problem

50

Sleeping barber

q Barber
v if there are people waiting for a hair cut bring them to

the barber chair, and give them a haircut
v else go to sleep

q Customer:
v if the waiting chairs are all full, then leave store.
v if someone is getting a haircut, then wait for the barber

to free up by sitting in a chair
v if the barber is sleeping, then wake him up and get a

haircut

51

Solution to the sleeping barber problem

52

The readers and writers problem

q Readers and writers want to access a database
q Multiple readers can proceed concurrently
q Writers must synchronize with readers and

other writers
q Maximize concurrency
q Prevent starvation

53

One solution to readers and writers

54

Counting semaphores

q A binary semaphore can only take on the values
of [0, 1].

q Class exercise: create a counting semaphore
(generalized semaphore that we discussed
previously) using just a binary semaphore!!

55

Possible solution

Semaphore S1, S2, S3; // BINARY!!
int C = N; // N is # locks

down_c(sem){
 downB(S3);
 downB(S1);
 C = C – 1;
 if (C<0) {
 upB(S1);
 downB(S2);
 }
 else {
 upB(S1);
 }
 upB(S3);
 }

up_c(sem){
 downB(S1);
 C = C + 1;
 if (C<=0) {
 upB(S2);
 }
 upB(S1);
 }

