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Race conditions

q What is a race condition?
v two or more processes have an inconsistent view of a

shared memory region (I.e., a variable)

q Why do race conditions occur?
v values of memory locations replicated in registers during

execution
v context switches at arbitrary times during execution
v processes can see “stale” memory values in registers

q What solutions can we apply?
v prevent context switches by preventing interrupts?
v make processes coordinate with each other to ensure

mutual exclusion in accessing “critical sections” of code
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Counter increment race condition

Incrementing a counter (load, increment, store)
Context switch can occur after load and before increment!
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Mutual exclusion conditions

q No two processes simultaneously in critical region

q No assumptions made about speeds or numbers of CPUs

q No process running outside its critical region may block
another process

q No process must wait forever to enter its critical region
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Critical regions with mutual exclusion

Mutual exclusion using critical regions
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How can we implement mutual exclusion?

q What about using a binary “lock” variable in
memory and having processes check it and set it
before entry to critical regions?

q Many computers have some limited hardware
support for setting locks
v “Atomic” Test and Set Lock instruction
v “Atomic” compare and swap operation

q Solves the problem of
v Expressing intention to enter C.S.
v Actually setting a lock to prevent concurrent access
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Test and Set Lock

q Test-and-set does two things atomically:
v Test a lock (whose value is returned)
v Set the lock

q Lock obtained when the return value is FALSE
q If TRUE, someone already had the lock (and

still has it)

lock = {TRUE , FALSE}

Test_var

1. extract value

2. Set TRUE
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Test and Set Lock
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Lock
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Test and Set Lock
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Test and Set Lock

P1

Lock

FALSE
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Critical section entry code with TSL

1 repeat
2  while(TSL(lock))
3     no-op;

4  critical section

5  Lock = FALSE;

6  remainder section

7 until FALSE

1 repeat
• while(TSL(lock))
3     no-op;

4  critical section

5  Lock = FALSE;

6  remainder section

7 until FALSE

JI

Guaranteed that only one process returns with FALSE
when a lock is returned to the system and others are
waiting to act on the lock
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Generalized primitives for critical sections

q Thus far, the solutions have used busy waiting
v a process consumes CPU resources to evaluate when a

lock becomes free
v on a single CPU system busy waiting prevents the lock

holder from running, completing the critical section and
releasing the lock!

v it would be better to block instead of busy wait (on a
single CPU system)

q Blocking synchronization primitives
v sleep – allows a process to sleep on a condition
v wakeup – allows a process to signal another process

that a condition it was waiting on is true
v but how can these be implemented?
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Blocking synchronization primitives

q Sleep and wakeup are system calls
v OS can implement them by managing a data structure that

records who is blocked and on what condition
v but how can the OS access these data structures

atomically?

q Concurrency in the OS: context switches and interrupts
v the OS can arrange not to perform a context switch while

manipulating its data structures for sleep and wakeup
v but what about interrupts?
v what if interrupt handlers manipulate the sleep and wakeup

data structures? What if they need synchronization?
v how can the OS synchronize access to its own critical

sections?
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Disabling interrupts

q Disabling interrupts in the OS vs disabling interrupts in
user processes
v why not allow user processes to disable interrupts?
v is it ok to disable interrupts in the OS?
v what precautions should you take?
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Generic synchronization problems
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Producer/Consumer with busy waiting

process producer{
while(1){
  //produce char c
  while (count==n)
    no_op;
  buf[InP] = c;
  InP = InP + 1 mod n
  count++;
  }

}

process consumer{
while(1){
  while (count==0)
    no_op;
  c = buf[OutP];
  OutP = OutP + 1 mod n
  count--;
  //consume char
  }

}

0

2

3

n-1

…

Global variables:
    char buf[n]
    int InP, OutP; // [0-n-1]
    int count
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Problems with busy waiting solution

q Producer and consumer can’t run at the same time
q Count variable can be corrupted if context switch occurs

at the wrong time
q Bugs difficult to track down
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Producer/Consumer with blocking

process producer{
• while(1){
•   //produce char c
•   if (count==n)
•     sleep(full);
•   buf[InP] = c;
•   InP = InP + 1 mod n
•   count++;
•   if (count == 1)
•     wakeup(empty);
•   }
}

process consumer{
• while(1){
•   while (count==0)
•     sleep(empty);
•   c = buf[OutP];
•   OutP = OutP + 1 mod n
•   count--;
•   if (count == n-1)
•     wakeup(full);
•   //consume char
•   }
}

1

2

3

n-1

…

Global variables:
    char buf[n]
    int InP, OutP; // [0-n-1]
    int count
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Problems with the blocking solution

q Count variable can be corrupted
q Increments or decrements may be lost
q Both processes may sleep forever
q Buffer contents may be over-written

q Code that manipulates count must be made a critical
section and protected using mutual exclusion

q Sleep and wakeup must be implemented as system calls
q OS must use synchronization mechanisms (TSL or

interrupt disabling) in its implementation of sleep and
wake-up … I.e., the critical sections of OS code that
manipulate sleep/wakeup data structures must be
protected using mutual exclusion
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Semaphores

q An abstract data type that can be used for
condition synchronization and mutual exclusion

q Integer variable with two operations:
v down (sema_var)

decrement sema_var by 1, if possible
if not possible, “wait” until possible

v up(sema_var)
increment sema_var by 1

q Both up() and down() are assumed to be atomic
v made to be atomic by OS implementation
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Semaphores

q There are multiple names for semaphores
v Down(S),  wait(S),  P(S)
v Up(S), signal(S), V(S)

q Semaphore implementations
v Binary semaphores (mutex)

• support mutual exclusion (lock either set or free)

v Counting semaphores
• support multiple values for more sophisticated

coordination and controlled concurrent access
among processes
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Using Semaphores for Mutex

1 repeat

2  down(mutex);

3  critical section

4  up(mutex);

5  remainder section

6 until FALSE

1 repeat

2  down(mutex);

3  critical section

4  up(mutex);

5  remainder section

6 until FALSE

semaphore mutex = 1
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Using Semaphores for Mutex

1 repeat
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3  critical section

4  up(mutex);

5  remainder section

6 until FALSE

1 repeat

2  down(mutex);

3  critical section

4  up(mutex);

5  remainder section

6 until FALSE

semaphore mutex = 0
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Using Semaphores for Mutex

1 repeat
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3  critical section
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2  down(mutex);

3  critical section

4  up(mutex);
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Using Semaphores for Mutex

1 repeat

2  down(mutex);

3  critical section

4  up(mutex);

5  remainder section

6 until FALSE

1 repeat

2  down(mutex);

3  critical section

4  up(mutex);

5  remainder section

6 until FALSE

semaphore mutex = 1 Check again to see if it 
can be decremented
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In class exercise…

q Implement producer consumer solution:
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Counting semaphores in producer/consumer

process producer{
• while(1){
•   //produce char c

•   down(empty_buffs);
•   buf[InP] = c;
•   InP = InP + 1 mod n
•   up(full_buffs);

• }
}

process consumer{
• while(1){

•   down(full_buffs);
•   c = buf[OutP];
•   OutP = OutP + 1 mod n
•   up(empty_buffs);

•   //consume char
•   }
}

Global variables
  semaphore full_buffs = 0;
  semaphore empty_buffs = n;
  char buff[n];
  int InP,  OutP;
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Implementing semaphores

q Generally, the hardware has some simple
mechanism to support semaphores
v Control over interrupts (almost all)
v Special atomic instructions in ISA

• test and set lock
• compare and swap

q Spin-Locks vs. Blocking
v Spin-locks (busy waiting)

• may waste a lot of cycles on uni-processors
v Blocking

• may waste a lot of cycles on multi-processors



39

Implementing semphores

q Blocking

Up(semaphore sem)
  DISABLE_INTS
    sem.val++;
    if (sem.val <= 0) {
      proc = remove next
         proc from sem.L
      wakeup(proc);
      }
  ENABLE_INTS

struct semaphore{
    int val;
    list L;
    }

Down(semaphore sem)
  DISABLE_INTS
    sem.val--;
    if (sem.val < 0){
      add proc to sem.L
      block(proc);
      }
  ENABLE_INTS
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Semaphores in UNIX

q User-accessible semaphores in UNIX are
somewhat complex
v each up and down operation is done atomically on an

“array” of semaphores.

q *********WORDS OF WARNING *********
v Semaphores are allocated by (and in) the operating

system (number based on configuration parameters).

v Semaphores in UNIX ARE A SHARED RESOURCE
AMONG EVERYONE (most implementations are).

v REMOVE your semaphores after you are done with
them.
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Typical usage

main(){
int sem_id;
sem_id = NewSemaphore(1);
...
Down(sem_id); 
 
[CRITICAL SECTION] 
 
Up (sem_id);

...
FreeSemaphore(sem_id);
}
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Managing your UNIX semaphores

q Listing currently allocated ipc resources

ipcs

q Removing semaphores

ipcrm -s <sem number>
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Classical IPC problems

q There are a number of “classic” IPC problems
including:
v Producer / Consumer synchronization

v The dining philosophers problem

v The sleeping barber problem

v The readers and writers problem

v Counting semaphores out of binary semaphores
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Dining Philosophers Problem

q Five philosophers sit at a table

q Between each philosopher there is one chopstick

q Philosophers:

q Why do they need to synchronize?
q How should they do it?

while(!dead){
  Think(hard);
  Grab first chopstick;
  Grab second chopstick;
  Eat;
  Put first chopstick back;
  Put second chopstick back;
  }
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Dining philospher’s solution???

q Why doesn’t this work?
#define N 5
Philosopher()
{
  while(!dead){
    Think(hard);
    take_fork(i);
    take_fork((i+1)% N);
    Eat(alot);
    put_fork(i);
    put_fork((i+1)% N);
    }
}
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Dining philospher’s solution (part 1)



47

Dining philospher’s solution (part 2)
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Dining Philosophers

q Is this correct?
q What does it mean for it to be correct?
q Is there an easier way?
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Sleeping Barber Problem
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Sleeping barber

q Barber
v if there are people waiting for a hair cut bring them to

the barber chair, and give them a haircut
v else go to sleep

q Customer:
v if the waiting chairs are all full, then leave store.
v if someone is getting a haircut, then wait for the barber

to free up by sitting in a chair
v if the barber is sleeping, then wake him up and get a

haircut
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Solution to the sleeping barber problem
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The readers and writers problem

q Readers and writers want to access a database
q Multiple readers can proceed concurrently
q Writers must synchronize with readers and

other writers
q Maximize concurrency
q Prevent starvation
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One solution to readers and writers
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Counting semaphores

q A binary semaphore can only take on the values
of [0, 1].

q Class exercise: create a counting semaphore
(generalized semaphore that we discussed
previously) using just a binary semaphore!!
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Possible solution

Semaphore S1, S2, S3; // BINARY!!
int C = N;  // N is # locks

down_c(sem){
  downB(S3);
  downB(S1);
  C = C – 1;
  if (C<0) {
    upB(S1);
    downB(S2);
    }
  else {
    upB(S1);
    }
  upB(S3);
  }

up_c(sem){
  downB(S1);
  C = C + 1;
  if (C<=0) {
    upB(S2);
    }
  upB(S1);
  }


