Solution to Problem 2 in Memory Management Tutorial

Virtual Address	Memory Page	Page table entry (bits)	Virtual Page No # (bits)	Page Offset (bits)	Addressable Physical memory
16	256 B	2	8	8	1 KB
32	1 MB	4	12	20	2 ²⁴ Bytes (16 MB)
32	1 KB	8	22	10	2 ¹⁸ Bytes (256 KB)
64	16 KB	20	50	14	2 ³⁴ Bytes (4 GB)
64	8 MB	16	41	23	2 ³⁹ Bytes (512 GB)

(1) **To Find Page number bits and Offset:**

Logical Address = 16 bits

Page Size = 256 Bytes = 2^8 (So, 8 bits are needed to represent the offset) Remaining represents the bits needed to represent the page number = 16 - 8 = 8 bits

Addressable Memory:

Physical Address = Frame Number + Offset Page table entry (Frame Number) = 2 bits Offset = 8 bits (Same as the logical address as the page size and frame size are the same)

So the addressable memory is $2^{(8+2)} = 2^{10} = 1$ KB

Basics:

 $\frac{1000}{1} \text{ KB} = 1024 \text{ Bytes} = 2^{10} \text{ Bytes}$ $1\text{ MB} = 1024 \text{ KB} = 2^{10} * 2^{10} = 2^{(10+10)} = 2^{20} \text{ Bytes}$ $1 \text{ GB} = 1024 \text{ MB} = 2^{10} * 2^{10} * 2^{10} = 2^{(10+10+10)} = 2^{30} \text{ Bytes}$

Note: 2^{24} Bytes can be written as $2^{20} * 2^4 = 1$ MB * 16 = 16 MB