
Main Memory

Memory Management

 Background

 Swapping

 Contiguous Memory Allocation

 Segmentation

 Paging

 Structure of the Page Table

 Example: The Intel 32 and 64-bit Architectures

 Example: ARM Architecture

Objectives

 To provide a detailed description of various ways of

organizing memory hardware

 To discuss various memory-management techniques,

including paging and segmentation

 To provide a detailed description of the Intel Pentium, which

supports both pure segmentation and segmentation with

paging

Background

 Program must be brought (from disk) into memory and

placed within a process for it to be run

 Main memory and registers are only storage CPU can

access directly

 Memory unit only sees a stream of addresses + read

requests, or address + data and write requests

 Register access in one CPU clock (or less)

 Main memory can take many cycles, causing a stall

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

Base and Limit Registers

 A pair of base and limit registers define the logical address space

 CPU must check every memory access generated in user mode to

be sure it is between base and limit for that user

Hardware Address Protection

Address Binding

 Programs on disk, ready to be brought into memory to execute form an

input queue

 Without support, must be loaded into address 0000

 Inconvenient to have first user process physical address always at 0000

 How can it not be?

 Further, addresses represented in different ways at different stages of a

program’s life

 Source code addresses usually symbolic

 Compiled code addresses bind to relocatable addresses

 i.e. “14 bytes from beginning of this module”

 Linker or loader will bind relocatable addresses to absolute addresses

 i.e. 74014

 Each binding maps one address space to another

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses

can happen at three different stages

 Compile time: If memory location known a priori, absolute

code can be generated; must recompile code if starting

location changes

 Load time: Must generate relocatable code if memory

location is not known at compile time

 Execution time: Binding delayed until run time if the

process can be moved during its execution from one memory

segment to another

 Need hardware support for address maps (e.g., base and

limit registers)

Multistep Processing of a User Program

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a

separate physical address space is central to proper memory

management

 Logical address – generated by the CPU; also referred to

as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time

and load-time address-binding schemes; logical (virtual) and

physical addresses differ in execution-time address-binding

scheme

 Logical address space is the set of all logical addresses

generated by a program

 Physical address space is the set of all physical addresses

generated by a program

Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical

address

 Many methods possible, covered in the rest of this chapter

 To start, consider simple scheme where the value in the

relocation register is added to every address generated by a

user process at the time it is sent to memory

 Base register now called relocation register

 MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the

real physical addresses

 Execution-time binding occurs when reference is made to

location in memory

 Logical address bound to physical addresses

Dynamic relocation using a relocation register

 Routine is not loaded until it is

called

 Better memory-space utilization;

unused routine is never loaded

 All routines kept on disk in

relocatable load format

 Useful when large amounts of

code are needed to handle

infrequently occurring cases

 No special support from the

operating system is required

 Implemented through program

design

 OS can help by providing libraries

to implement dynamic loading

Dynamic Linking

 Static linking – system libraries and program code combined by

the loader into the binary program image

 Dynamic linking –linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate

memory-resident library routine

 Stub replaces itself with the address of the routine, and executes

the routine

 Operating system checks if routine is in processes’ memory

address

 If not in address space, add to address space

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

 Consider applicability to patching system libraries

 Versioning may be needed

Swapping

 A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution

 Total physical memory space of processes can exceed
physical memory

 Backing store – fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access to
these memory images

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

Swapping (Cont.)

 Does the swapped out process need to swap back in to same
physical addresses?

 Depends on address binding method

 Plus consider pending I/O to / from process memory space

 Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows)

 Swapping normally disabled

 Started if more than threshold amount of memory allocated

 Disabled again once memory demand reduced below

threshold

Schematic View of Swapping

Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need to

swap out a process and swap in target process

 Context switch time can then be very high

 100MB process swapping to hard disk with transfer rate of

50MB/sec

 Swap out time of 2000 ms

 Plus swap in of same sized process

 Total context switch swapping component time of 4000ms

(4 seconds)

 Can reduce if reduce size of memory swapped – by knowing

how much memory really being used

 System calls to inform OS of memory use via
request_memory() and release_memory()

Context Switch Time and Swapping (Cont.)

 Other constraints as well on swapping

 Pending I/O – can’t swap out as I/O would occur to wrong

process

 Or always transfer I/O to kernel space, then to I/O device

 Known as double buffering, adds overhead

 Standard swapping not used in modern operating systems

 But modified version common

 Swap only when free memory extremely low

Swapping on Mobile Systems

 Not typically supported

 Flash memory based

 Small amount of space

 Limited number of write cycles

 Poor throughput between flash memory and CPU on mobile

platform

 Instead use other methods to free memory if low

 iOS asks apps to voluntarily relinquish allocated memory

 Read-only data thrown out and reloaded from flash if needed

 Failure to free can result in termination

 Android terminates apps if low free memory, but first writes

application state to flash for fast restart

 Both OSes support paging as discussed below

Contiguous Allocation

 Main memory must support both OS and user processes

 Limited resource, must allocate efficiently

 Contiguous allocation is one early method

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with

interrupt vector

 User processes then held in high memory

 Each process contained in single contiguous section of

memory

Contiguous Allocation (Cont.)

 Relocation registers used to protect user processes from each

other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each

logical address must be less than the limit register

 MMU maps logical address dynamically

 Can then allow actions such as kernel code being transient

and kernel changing size

Hardware Support for Relocation and Limit Registers

Multiple-partition allocation

 Multiple-partition allocation

 Degree of multiprogramming limited by number of partitions

 Variable-partition sizes for efficiency (sized to a given process’ needs)

 Hole – block of available memory; holes of various size are scattered

throughout memory

 When a process arrives, it is allocated memory from a hole large enough to

accommodate it

 Process exiting frees its partition, adjacent free partitions combined

 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage

utilization

Fragmentation

 External Fragmentation – total memory space exists to

satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly

larger than requested memory; this size difference is memory

internal to a partition, but not being used

 First fit analysis reveals that given N blocks allocated, 0.5 N

blocks lost to fragmentation

 1/3 may be unusable -> 50-percent rule

Fragmentation (Cont.)

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together

in one large block

 Compaction is possible only if relocation is dynamic, and is

done at execution time

 I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

 Now consider that backing store has same fragmentation

problems

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

 A segment is a logical unit such as:

 main program

 procedure

 function

 method

 object

 local variables, global variables

 common block

 stack

 symbol table

 arrays

User’s View of a Program

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Segmentation Architecture

 Logical address consists of a two tuple:

 <segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each

table entry has:

 base – contains the starting physical address where the

segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment

table’s location in memory

 Segment-table length register (STLR) indicates number of

segments used by a program;

 segment number s is legal if s < STLR

Segmentation Architecture (Cont.)

 Protection

 With each entry in segment table associate:

 validation bit = 0 illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing

occurs at segment level

 Since segments vary in length, memory allocation is a

dynamic storage-allocation problem

 A segmentation example is shown in the following diagram

Segmentation Hardware

Paging

 Physical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter is

available

 Avoids external fragmentation

 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames

 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and

load program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

Paging Hardware

Paging Model of Logical and Physical Memory

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

Paging (Cont.)

 Calculating internal fragmentation

 Page size = 2,048 bytes

 Process size = 72,766 bytes

 35 pages + 1,086 bytes

 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Worst case fragmentation = 1 frame – 1 byte

 On average fragmentation = 1 / 2 frame size

 So small frame sizes desirable?

 But each page table entry takes memory to track

 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB

 Process view and physical memory now very different

 By implementation process can only access its own memory

Free Frames

Before allocation After allocation

Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the page

table

 In this scheme every data/instruction access requires two

memory accesses

 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of

a special fast-lookup hardware cache called associative

memory or translation look-aside buffers (TLBs)

Implementation of Page Table (Cont.)

 Some TLBs store address-space identifiers (ASIDs) in each

TLB entry – uniquely identifies each process to provide

address-space protection for that process

 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for faster access

next time

 Replacement policies must be considered

 Some entries can be wired down for permanent fast

access

Associative Memory

 Associative memory – parallel search

 Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

Page # Frame #

Paging Hardware With TLB

Effective Access Time

 Associative Lookup = time unit

 Can be < 10% of memory access time

 Hit ratio =

 Hit ratio – percentage of times that a page number is found in the
associative registers; ratio related to number of associative
registers

 Consider = 80%, = 20ns for TLB search, 100ns for memory access

 Effective Access Time (EAT)

 EAT = (1 +) + (2 +)(1 –)

 = 2 + –

 Consider = 80%, = 20ns for TLB search, 100ns for memory access

 EAT = 0.80 x 100 + 0.20 x 200 = 120ns

 Consider more realistic hit ratio -> = 99%, = 20ns for TLB search,
100ns for memory access

 EAT = 0.99 x 100 + 0.01 x 200 = 101ns

Memory Protection

 Memory protection implemented by associating protection bit

with each frame to indicate if read-only or read-write access is

allowed

 Can also add more bits to indicate page execute-only, and

so on

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’

logical address space

 Or use page-table length register (PTLR)

 Any violations result in a trap to the kernel

Valid (v) or Invalid (i) Bit In A Page Table

Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems)

 Similar to multiple threads sharing the same process space

 Also useful for interprocess communication if sharing of

read-write pages is allowed

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear

anywhere in the logical address space

Shared Pages Example

Structure of the Page Table

 Memory structures for paging can get huge using straight-

forward methods

 Consider a 32-bit logical address space as on modern

computers

 Page size of 4 KB (212)

 Page table would have 1 million entries (232 / 212)

 If each entry is 4 bytes -> 4 MB of physical address space /

memory for page table alone

 That amount of memory used to cost a lot

 Don’t want to allocate that contiguously in main memory

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

Hierarchical Page Tables

 Break up the logical address space into multiple page

tables

 A simple technique is a two-level page table

 We then page the page table

Two-Level Page-Table Scheme

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 12-bit page number

 a 10-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

 Known as forward-mapped page table

Address-Translation Scheme

64-bit Logical Address Space

 Even two-level paging scheme not sufficient

 If page size is 4 KB (212)

 Then page table has 252 entries

 If two level scheme, inner page tables could be 210 4-byte entries

 Address would look like

 Outer page table has 242 entries or 244 bytes

 One solution is to add a 2nd outer page table

 But in the following example the 2nd outer page table is still 234 bytes in

size

 And possibly 4 memory access to get to one physical memory

location

Three-level Paging Scheme

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the same

location

 Each element contains (1) the virtual page number (2) the value of the

mapped page frame (3) a pointer to the next element

 Virtual page numbers are compared in this chain searching for a

match

 If a match is found, the corresponding physical frame is extracted

 Variation for 64-bit addresses is clustered page tables

 Similar to hashed but each entry refers to several pages (such as

16) rather than 1

 Especially useful for sparse address spaces (where memory

references are non-contiguous and scattered)

Hashed Page Table

Inverted Page Table

 Rather than each process having a page table and keeping track

of all possible logical pages, track all physical pages

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that

real memory location, with information about the process that

owns that page

 Decreases memory needed to store each page table, but

increases time needed to search the table when a page

reference occurs

 Use hash table to limit the search to one — or at most a few —

page-table entries

 TLB can accelerate access

 But how to implement shared memory?

 One mapping of a virtual address to the shared physical

address

Inverted Page Table Architecture

Oracle SPARC Solaris

 Consider modern, 64-bit operating system example with tightly

integrated HW

 Goals are efficiency, low overhead

 Based on hashing, but more complex

 Two hash tables

 One kernel and one for all user processes

 Each maps memory addresses from virtual to physical memory

 Each entry represents a contiguous area of mapped virtual

memory,

 More efficient than having a separate hash-table entry for

each page

 Each entry has base address and span (indicating the number

of pages the entry represents)

Oracle SPARC Solaris (Cont.)

 TLB holds translation table entries (TTEs) for fast hardware lookups

 A cache of TTEs reside in a translation storage buffer (TSB)

 Includes an entry per recently accessed page

 Virtual address reference causes TLB search

 If miss, hardware walks the in-memory TSB looking for the TTE

corresponding to the address

 If match found, the CPU copies the TSB entry into the TLB

and translation completes

 If no match found, kernel interrupted to search the hash table

– The kernel then creates a TTE from the appropriate hash

table and stores it in the TSB, Interrupt handler returns

control to the MMU, which completes the address

translation.

Example: The Intel 32 and 64-bit Architectures

 Dominant industry chips

 Pentium CPUs are 32-bit and called IA-32 architecture

 Current Intel CPUs are 64-bit and called IA-64 architecture

 Many variations in the chips, cover the main ideas here

Example: The Intel IA-32 Architecture

 Supports both segmentation and segmentation with paging

 Each segment can be 4 GB

 Up to 16 K segments per process

 Divided into two partitions

 First partition of up to 8 K segments are private to

process (kept in local descriptor table (LDT))

 Second partition of up to 8K segments shared among all

processes (kept in global descriptor table (GDT))

Example: The Intel IA-32 Architecture (Cont.)

 CPU generates logical address

 Selector given to segmentation unit

 Which produces linear addresses

 Linear address given to paging unit

 Which generates physical address in main memory

 Paging units form equivalent of MMU

 Pages sizes can be 4 KB or 4 MB

Logical to Physical Address Translation in IA-32

Intel IA-32 Segmentation

Intel IA-32 Paging Architecture

Intel IA-32 Page Address Extensions

 32-bit address limits led Intel to create page address extension (PAE),

allowing 32-bit apps access to more than 4GB of memory space

 Paging went to a 3-level scheme

 Top two bits refer to a page directory pointer table

 Page-directory and page-table entries moved to 64-bits in size

 Net effect is increasing address space to 36 bits – 64GB of physical

memory

Intel x86-64

 Current generation Intel x86 architecture

 64 bits is ginormous (> 16 exabytes)

 In practice only implement 48 bit addressing

 Page sizes of 4 KB, 2 MB, 1 GB

 Four levels of paging hierarchy

 Can also use PAE so virtual addresses are 48 bits and physical

addresses are 52 bits

Example: ARM Architecture

 Dominant mobile platform chip

(Apple iOS and Google Android

devices for example)

 Modern, energy efficient, 32-bit

CPU

 4 KB and 16 KB pages

 1 MB and 16 MB pages (termed

sections)

 One-level paging for sections, two-

level for smaller pages

 Two levels of TLBs

 Outer level has two micro

TLBs (one data, one

instruction)

 Inner is single main TLB

 First inner is checked, on

miss outers are checked,

and on miss page table

walk performed by CPU

outer page inner page offset

4-KB

or

16-KB

page

1-MB

or

16-MB

section

32 bits

Summary

 A detailed description of various ways of organizing memory hardware

 Discussed various memory-management techniques, including paging

and segmentation

 A detailed description of the Intel Pentium, which supports both pure

segmentation and segmentation with paging

Test your Understanding

 Name two differences between logical and physical addresses

 Why are page sizes always powers of 2?

 Consider a logical address space of 64 pages of 1024 words

each, mapped onto a physical memory of 32 frames.

a. How many bits are there in the logical address?

b. How many bits are there in the physical address?

