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Objectives 

 To provide a detailed description of various ways of 

organizing memory hardware 

 To discuss various memory-management techniques, 

including paging and segmentation 

 To provide a detailed description of the Intel Pentium, which 

supports both pure segmentation and segmentation with 

paging 



Background 

 Program must be brought (from disk)  into memory and 

placed within a process for it to be run 

 Main memory and registers are only storage CPU can 

access directly 

 Memory unit only sees a stream of addresses + read 

requests, or address + data and write requests 

 Register access in one CPU clock (or less) 

 Main memory can take many cycles, causing a stall 

 Cache sits between main memory and CPU registers 

 Protection of memory required to ensure correct operation 

 



Base and Limit Registers 

 A pair of base and limit registers define the logical address space 

 CPU must check every memory access generated in user mode to 

be sure it is between base and limit for that user 



Hardware Address Protection 



Address Binding 

 Programs on disk, ready to be brought into memory to execute form an 

input queue 

 Without support, must be loaded into address 0000 

 Inconvenient to have first user process physical address always at 0000  

 How can it not be? 

 Further, addresses represented in different ways at different stages of a 

program’s life 

 Source code addresses usually symbolic 

 Compiled code addresses bind to relocatable addresses 

 i.e. “14 bytes from beginning of this module” 

 Linker or loader will bind relocatable addresses to absolute addresses 

 i.e. 74014 

 Each binding maps one address space to another 

 

 



Binding of Instructions and Data to Memory 

 

 Address binding of instructions and data to memory addresses 

can happen at three different stages 

 Compile time:  If memory location known a priori, absolute 

code can be generated; must recompile code if starting 

location changes 

 Load time:  Must generate relocatable code if memory 

location is not known at compile time 

 Execution time:  Binding delayed until run time if the 

process can be moved during its execution from one memory 

segment to another 

 Need hardware support for address maps (e.g., base and 

limit registers) 



Multistep Processing of a User Program  



Logical vs. Physical Address Space 

 The concept of a logical address space that is bound to a 

separate physical address space is central to proper memory 

management 

 Logical address – generated by the CPU; also referred to 

as virtual address 

 Physical address – address seen by the memory unit 

 Logical and physical addresses are the same in compile-time 

and load-time address-binding schemes; logical (virtual) and 

physical addresses differ in execution-time address-binding 

scheme 

 Logical address space is the set of all logical addresses 

generated by a program 

 Physical address space is the set of all physical addresses 

generated by a program 

 

 



Memory-Management Unit (MMU) 

 Hardware device that at run time maps virtual to physical 

address 

 Many methods possible, covered in the rest of this chapter 

 To start, consider simple scheme where the value in the 

relocation register is added to every address generated by a 

user process at the time it is sent to memory 

 Base register now called relocation register 

 MS-DOS on Intel 80x86 used 4 relocation registers 

 The user program deals with logical addresses; it never sees the 

real physical addresses 

 Execution-time binding occurs when reference is made to 

location in memory 

 Logical address bound to physical addresses 



Dynamic relocation using a relocation register 

 Routine is not loaded until it is 

called 

 Better memory-space utilization; 

unused routine is never loaded 

 All routines kept on disk in 

relocatable load format 

 Useful when large amounts of 

code are needed to handle 

infrequently occurring cases 

 No special support from the 

operating system is required 

 Implemented through program 

design 

 OS can help by providing libraries 

to implement dynamic loading 



Dynamic Linking 

 Static linking – system libraries and program code combined by 

the loader into the binary program image 

 Dynamic linking –linking postponed until execution time 

 Small piece of code, stub, used to locate the appropriate 

memory-resident library routine 

 Stub replaces itself with the address of the routine, and executes 

the routine 

 Operating system checks if routine is in processes’ memory 

address 

 If not in address space, add to address space 

 Dynamic linking is particularly useful for libraries 

 System also known as shared libraries 

 Consider applicability to patching system libraries 

 Versioning may be needed 



Swapping 

 A process can be swapped temporarily out of memory to a 
backing store, and then brought back into memory for continued 
execution 

 Total physical memory space of processes can exceed 
physical memory 

 Backing store – fast disk large enough to accommodate copies 
of all memory images for all users; must provide direct access to 
these memory images 

 Roll out, roll in – swapping variant used for priority-based 
scheduling algorithms; lower-priority process is swapped out so 
higher-priority process can be loaded and executed 

 Major part of swap time is transfer time; total transfer time is 
directly proportional to the amount of memory swapped 

 System maintains a ready queue of ready-to-run processes 
which have memory images on disk 



Swapping (Cont.) 

 Does the swapped out process need to swap back in to same 
physical addresses? 

 Depends on address binding method 

 Plus consider pending I/O to / from process memory space 

 Modified versions of swapping are found on many systems (i.e., 
UNIX, Linux, and Windows) 

 Swapping normally disabled 

 Started if more than threshold amount of memory allocated 

 Disabled again once memory demand reduced below 

threshold 
 



Schematic View of Swapping 



Context Switch Time including Swapping 

 If next processes to be put on CPU is not in memory, need to 

swap out a process and swap in target process 

 Context switch time can then be very high 

 100MB process swapping to hard disk with transfer rate of 

50MB/sec 

 Swap out time of 2000 ms 

 Plus swap in of same sized process 

 Total context switch swapping component time of 4000ms 

(4 seconds) 

 Can reduce if reduce size of memory swapped – by knowing 

how much memory really being used 

 System calls to inform OS of memory use via 
request_memory() and release_memory() 



Context Switch Time and Swapping (Cont.) 

 Other constraints as well on swapping 

 Pending I/O – can’t swap out as I/O would occur to wrong 

process 

 Or always transfer I/O to kernel space, then to I/O device 

 Known as double buffering, adds overhead 

 Standard swapping not used in modern operating systems 

 But modified version common 

 Swap only when free memory extremely low 



Swapping on Mobile Systems 

 Not typically supported 

 Flash memory based 

 Small amount of space 

 Limited number of write cycles 

 Poor throughput between flash memory and CPU on mobile 

platform 

 Instead use other methods to free memory if low 

 iOS asks apps to voluntarily relinquish allocated memory 

 Read-only data thrown out and reloaded from flash if needed 

 Failure to free can result in termination 

 Android terminates apps if low free memory, but first writes 

application state to flash for fast restart 

 Both OSes support paging as discussed below 



Contiguous Allocation 

 Main memory must support both OS and user processes 

 Limited resource, must allocate efficiently 

 Contiguous allocation is one early method 

 Main memory usually into two partitions: 

 Resident operating system, usually held in low memory with 

interrupt vector 

 User processes then held in high memory 

 Each process contained in single contiguous section of 

memory 

 



Contiguous Allocation (Cont.) 

 Relocation registers used to protect user processes from each 

other, and from changing operating-system code and data 

 Base register contains value of smallest physical address 

 Limit register contains range of logical addresses – each 

logical address must be less than the limit register  

 MMU maps logical address dynamically 

 Can then allow actions such as kernel code being transient 

and kernel changing size 



Hardware Support for Relocation and Limit Registers 



Multiple-partition allocation 

 
 Multiple-partition allocation 

 Degree of multiprogramming limited by number of partitions 

 Variable-partition sizes for efficiency (sized to a given process’ needs) 

 Hole – block of available memory; holes of various size are scattered 

throughout memory 

 When a process arrives, it is allocated memory from a hole large enough to 

accommodate it 

 Process exiting frees its partition, adjacent free partitions combined 

 Operating system maintains information about: 

a) allocated partitions    b) free partitions (hole) 



Dynamic Storage-Allocation Problem 

 First-fit:  Allocate the first hole that is big enough 

 

 Best-fit:  Allocate the smallest hole that is big enough; must 
search entire list, unless ordered by size   

 Produces the smallest leftover hole 

 

 Worst-fit:  Allocate the largest hole; must also search entire list   

 Produces the largest leftover hole 

How to satisfy a request of size n from a list of free holes? 

First-fit and best-fit better than worst-fit in terms of speed and storage 

utilization 



Fragmentation 

 External Fragmentation – total memory space exists to 

satisfy a request, but it is not contiguous 

 Internal Fragmentation – allocated memory may be slightly 

larger than requested memory; this size difference is memory 

internal to a partition, but not being used 

 First fit analysis reveals that given N blocks allocated, 0.5 N 

blocks lost to fragmentation 

 1/3 may be unusable -> 50-percent rule 



Fragmentation (Cont.) 

 Reduce external fragmentation by compaction 

 Shuffle memory contents to place all free memory together 

in one large block 

 Compaction is possible only if relocation is dynamic, and is 

done at execution time 

 I/O problem 

 Latch job in memory while it is involved in I/O 

 Do I/O only into OS buffers 

 Now consider that backing store has same fragmentation 

problems 



Segmentation 

 Memory-management scheme that supports user view of memory  

 A program is a collection of segments 

 A segment is a logical unit such as: 

  main program 

  procedure  

  function 

  method 

  object 

  local variables, global variables 

  common block 

  stack 

  symbol table 

  arrays 



User’s View of a Program 



Logical View of Segmentation 
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Segmentation Architecture  

 Logical address consists of a two tuple: 

  <segment-number, offset>, 
 

 Segment table – maps two-dimensional physical addresses; each 

table entry has: 

 base – contains the starting physical address where the 

segments reside in memory 

 limit – specifies the length of the segment 
 

 Segment-table base register (STBR) points to the segment 

table’s location in memory 
 

 Segment-table length register (STLR) indicates number of 

segments used by a program; 

                   segment number s is legal if s < STLR 



Segmentation Architecture (Cont.) 

 Protection 

 With each entry in segment table associate: 

 validation bit = 0  illegal segment 

 read/write/execute privileges 

 Protection bits associated with segments; code sharing 

occurs at segment level 

 Since segments vary in length, memory allocation is a 

dynamic storage-allocation problem 

 A segmentation example is shown in the following diagram 



Segmentation Hardware 



Paging 

 Physical  address space of a process can be noncontiguous; 

process is allocated physical memory whenever the latter is 

available 

 Avoids external fragmentation 

 Avoids problem of varying sized memory chunks 

 Divide physical memory into fixed-sized blocks called frames 

 Size is power of 2, between 512 bytes and 16 Mbytes 

 Divide logical memory into blocks of same size called pages 

 Keep track of all free frames 

 To run a program of size N pages, need to find N free frames and 

load program 

 Set up a page table to translate logical to physical addresses 

 Backing store likewise split into pages 

 Still have Internal fragmentation 



Address Translation Scheme 

 Address generated by CPU is divided into: 

 Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory 

 Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit 

 

 

 

 

 For given logical address space 2m and page size 2n 

page number page offset

p d

m -n n



Paging Hardware 



Paging Model of Logical and  Physical Memory 



Paging Example 

n=2 and m=4   32-byte memory and 4-byte pages 



Paging (Cont.) 

 Calculating internal fragmentation 

 Page size = 2,048 bytes 

 Process size = 72,766 bytes 

 35 pages + 1,086 bytes 

 Internal fragmentation of 2,048 - 1,086 = 962 bytes 

 Worst case fragmentation = 1 frame – 1 byte 

 On average fragmentation = 1 / 2 frame size 

 So small frame sizes desirable? 

 But each page table entry takes memory to track 

 Page sizes growing over time 

 Solaris supports two page sizes – 8 KB and 4 MB 

 Process view and physical memory now very different 

 By implementation process can only access its own memory 



Free Frames 

Before allocation After allocation 



Implementation of Page Table 

 Page table is kept in main memory 

 Page-table base register (PTBR) points to the page table 

 Page-table length register (PTLR) indicates size of the page 

table 

 In this scheme every data/instruction access requires two 

memory accesses 

 One for the page table and one for the data / instruction 

 The two memory access problem can be solved by the use of 

a special fast-lookup hardware cache called associative 

memory or translation look-aside buffers (TLBs) 



Implementation of Page Table (Cont.) 

 Some TLBs store address-space identifiers (ASIDs) in each 

TLB entry – uniquely identifies each process to provide 

address-space protection for that process 

 Otherwise need to flush at every context switch 

 TLBs typically small (64 to 1,024 entries) 

 On a TLB miss, value is loaded into the TLB for faster access 

next time 

 Replacement policies must be considered 

 Some entries can be wired down for permanent fast 

access 



Associative Memory 

 Associative memory – parallel search  

 

 

 

 

 

 Address translation (p, d) 

 If p is in associative register, get frame # out 

 Otherwise get frame # from page table in memory 

 

Page # Frame #



Paging Hardware With TLB 



Effective Access Time 

 Associative Lookup =  time unit 

 Can be < 10% of memory access time 

 Hit ratio =  

 Hit ratio – percentage of times that a page number is found in the 
associative registers; ratio related to number of associative 
registers 

 Consider  = 80%,  = 20ns for TLB search, 100ns for memory access 

 Effective Access Time (EAT) 

  EAT = (1 + )  + (2 + )(1 – ) 

   = 2 +  –  

  Consider  = 80%,  = 20ns for TLB search, 100ns for memory access 

 EAT = 0.80 x 100 + 0.20 x 200 = 120ns 

 Consider more realistic hit ratio ->   = 99%,  = 20ns for TLB search, 
100ns for memory access 

 EAT = 0.99 x 100 + 0.01 x 200 = 101ns 

 

 



Memory Protection 

 Memory protection implemented by associating protection bit 

with each frame to indicate if read-only or read-write access is 

allowed 

 Can also add more bits to indicate page execute-only, and 

so on 

 Valid-invalid bit attached to each entry in the page table: 

 “valid” indicates that the associated page is in the 

process’ logical address space, and is thus a legal page 

 “invalid” indicates that the page is not in the process’ 

logical address space 

 Or use page-table length register (PTLR) 

 Any violations result in a trap to the kernel 



Valid (v) or Invalid (i) Bit In A Page Table 



Shared Pages 

 Shared code 

 One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems) 

 Similar to multiple threads sharing the same process space 

 Also useful for interprocess communication if sharing of 

read-write pages is allowed 

 Private code and data  

 Each process keeps a separate copy of the code and data 

 The pages for the private code and data can appear 

anywhere in the logical address space 



Shared Pages Example 



Structure of the Page Table 

 Memory structures for paging can get huge using straight-

forward methods 

 Consider a 32-bit logical address space as on modern 

computers 

 Page size of 4 KB (212) 

 Page table would have 1 million entries (232 / 212) 

 If each entry is 4 bytes -> 4 MB of physical address space / 

memory for page table alone 

 That amount of memory used to cost a lot 

 Don’t want to allocate that contiguously in main memory 

 Hierarchical Paging 

 Hashed Page Tables 

 Inverted Page Tables 



Hierarchical Page Tables 

 Break up the logical address space into multiple page 

tables 

 A simple technique is a two-level page table 

 We then page the page table 



Two-Level Page-Table Scheme 



Two-Level Paging Example 

 A logical address (on 32-bit machine with 1K page size) is divided into: 

 a page number consisting of 22 bits 

 a page offset consisting of 10 bits 
 

 Since the page table is paged, the page number is further divided into: 

 a 12-bit page number  

 a 10-bit page offset 
 

 Thus, a logical address is as follows: 
 
 
 
 
 
 

 where p1 is an index into the outer page table, and p2 is the 
displacement within the page of the inner page table 

 Known as forward-mapped page table 



Address-Translation Scheme 



64-bit Logical Address Space 

 Even two-level paging scheme not sufficient 

 If page size is 4 KB (212) 

 Then page table has 252 entries 

 If two level scheme, inner page tables could be 210 4-byte entries 

 Address would look like 

 

 

 

 Outer page table has 242 entries or 244 bytes 

 One solution is to add a 2nd outer page table 

 But in the following example the 2nd outer page table is still 234 bytes in 

size 

 And possibly 4 memory access to get to one physical memory 

location 

 



Three-level Paging Scheme 



Hashed Page Tables 

 Common in address spaces > 32 bits 

 The virtual page number is hashed into a page table 

 This page table contains a chain of elements hashing to the same 

location 

 Each element contains (1) the virtual page number (2) the value of the 

mapped page frame (3) a pointer to the next element 

 Virtual page numbers are compared in this chain searching for a 

match 

 If a match is found, the corresponding physical frame is extracted 

 Variation for 64-bit addresses is clustered page tables 

 Similar to hashed but each entry refers to several pages (such as 

16) rather than 1 

 Especially useful for sparse address spaces (where memory 

references are non-contiguous and scattered)  



Hashed Page Table 



Inverted Page Table 

 Rather than each process having a page table and keeping track 

of all possible logical pages, track all physical pages 

 One entry for each real page of memory 

 Entry consists of the virtual address of the page stored in that 

real memory location, with information about the process that 

owns that page 

 Decreases memory needed to store each page table, but 

increases time needed to search the table when a page 

reference occurs 

 Use hash table to limit the search to one — or at most a few — 

page-table entries 

 TLB can accelerate access 

 But how to implement shared memory? 

 One mapping of a virtual address to the shared physical 

address 



Inverted Page Table Architecture 



Oracle SPARC Solaris 

 Consider modern, 64-bit operating system example with tightly 

integrated HW 

 Goals are efficiency, low overhead 

 Based on hashing, but more complex 

 Two hash tables 

 One kernel and one for all user processes 

 Each maps memory addresses from virtual to physical memory 

 Each entry represents a contiguous area of mapped virtual 

memory, 

 More efficient than having a separate hash-table entry for 

each page 

 Each entry has  base address and  span (indicating the number 

of pages the entry represents) 

 



Oracle SPARC Solaris (Cont.) 

 TLB holds translation table entries (TTEs) for fast hardware lookups 

 A cache of TTEs reside in a translation storage buffer (TSB) 

 Includes an entry per recently accessed page 

 Virtual address reference causes TLB search  

 If miss, hardware walks the in-memory TSB looking for the TTE 

corresponding to the address 

 If match found, the CPU copies the TSB entry into the TLB 

and translation completes 

 If no match found, kernel interrupted to search the hash table 

– The kernel then creates a TTE from the appropriate hash 

table and stores it in the TSB, Interrupt handler returns 

control to the MMU, which completes the address 

translation.  

 



Example: The Intel 32 and 64-bit Architectures 

 Dominant industry chips 

 

 Pentium CPUs are 32-bit and called IA-32 architecture 

 

 Current Intel CPUs are 64-bit and called IA-64 architecture 

 

 Many variations in the chips, cover the main ideas here 

 



Example: The Intel IA-32 Architecture 

 Supports both segmentation and segmentation with paging 

 Each segment can be 4 GB 

 Up to 16 K segments per process 

 Divided into two partitions 

 First partition of up to 8 K segments are private to 

process (kept in local descriptor table (LDT)) 

 Second partition of up to 8K segments shared among all 

processes (kept in global descriptor table (GDT)) 

 



Example: The Intel IA-32 Architecture (Cont.) 

 CPU generates logical address 

 Selector given to segmentation unit 

 Which produces linear addresses  

 

 

 Linear address given to paging unit 

 Which generates physical address in main memory 

 Paging units form equivalent of MMU 

 Pages sizes can be 4 KB or 4 MB 

 



Logical to Physical Address Translation in IA-32 



Intel IA-32 Segmentation 



Intel IA-32 Paging Architecture 



Intel IA-32 Page Address Extensions 

 32-bit address limits led Intel to create page address extension (PAE), 

allowing 32-bit apps access to more than 4GB of memory space 

 Paging went to a 3-level scheme 

 Top two bits refer to a page directory pointer table 

 Page-directory and page-table entries moved to 64-bits in size 

 Net effect is increasing address space to 36 bits – 64GB of physical 

memory 

 

 



Intel x86-64 

 Current generation Intel x86 architecture 

 64 bits is ginormous (> 16 exabytes) 

 In practice only implement 48 bit addressing 

 Page sizes of 4 KB, 2 MB, 1 GB 

 Four levels of paging hierarchy 

 Can also use PAE so virtual addresses are 48 bits and physical 

addresses are 52 bits 



Example: ARM Architecture 

 Dominant mobile platform chip 

(Apple iOS and Google Android 

devices for example) 

 Modern, energy efficient, 32-bit 

CPU 

 4 KB and 16 KB pages 

 1 MB and 16 MB pages (termed 

sections) 

 One-level paging for sections, two-

level for smaller pages 

 Two levels of TLBs 

 Outer level has two micro 

TLBs (one data, one 

instruction) 

 Inner is single main TLB 

 First inner is checked, on 

miss outers are checked, 

and on miss page table 

walk performed by CPU 

 

outer page inner page offset

4-KB

or

16-KB

page

1-MB

or

16-MB 

section

32 bits



Summary 

 
 A detailed description of various ways of organizing memory hardware 

 

 Discussed various memory-management techniques, including paging 

and segmentation 

 

 A detailed description of the Intel Pentium, which supports both pure 

segmentation and segmentation with paging 



Test your Understanding 

 

 Name two differences between logical and physical addresses 

 Why are page sizes always powers of 2? 

 Consider a logical address space of 64 pages of 1024 words 

each, mapped onto a physical memory of 32 frames. 

a. How many bits are there in the logical address? 

b. How many bits are there in the physical address? 


