
Introduction

Adapted from Operating System Concepts – 9th Edition

Introduction

What Operating Systems Do

Computer-System Organization

Computer-System Architecture

Operating-System Structure

Operating-System Operations

Objectives

 To describe the basic organization of computer

systems

 To provide a grand tour of the major components

of operating systems

What is an Operating System?

 A program that acts as an intermediary between a

user of a computer and the computer hardware

 Operating system goals:

 Execute user programs and make solving user

problems easier

 Make the computer system convenient to use

 Use the computer hardware in an efficient manner

What is an Operating System?

 A program that acts as an intermediary between a

user of a computer and the computer hardware

 Operating system goals:

 Execute user programs and make solving user

problems easier

 Make the computer system convenient to use

 Use the computer hardware in an efficient manner

Goals of an Operating System

 Simplify the execution of user programs and make

solving user problems easier.

 Use computer hardware efficiently.

 Allow sharing of hardware and software resources.

 Make application software portable and versatile.

 Provide isolation, security and protection among user

programs. �

 Improve overall system reliability error confinement, fault

tolerance, reconfiguration.

Computer System Structure

 Computer system can be divided into four components:

 Hardware – provides basic computing resources

CPU, memory, I/O devices

 Operating system

Controls and coordinates use of hardware among

various applications and users

 Application programs – define the ways in which the

system resources are used to solve the computing

problems of the users

Word processors, compilers, web browsers,

database systems, video games

 Users

People, machines, other computers

Four Components of a Computer System

Operating System Definition

 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for efficient and fair

resource use

 OS is a control program

 Controls execution of programs to prevent errors and

improper use of the computer

Definition:

 “The one program running at all times on the computer” is the

kernel.

 Everything else is either

 a system program (ships with the operating system) , or

 an application program

Computer Startup

 bootstrap program is loaded at power-up or reboot

 Typically stored in ROM or EPROM, generally

known as firmware

 Initializes all aspects of system

 Loads operating system kernel and starts

execution

Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through

common bus providing access to shared memory

 Concurrent execution of CPUs and devices competing

for memory cycles

Computer-System Operation

 I/O devices and the CPU can execute concurrently

 Each device controller is in charge of a particular

device type

 Each device controller has a local buffer

 CPU moves data from/to main memory to/from local

buffers

 I/O is from the device to local buffer of controller

 Device controller informs CPU that it has finished its

operation by causing an interrupt

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service

routine generally, through the interrupt vector,

which contains the addresses of all the service

routines

 Interrupt architecture must save the address of the

interrupted instruction

 A trap or exception is a software-generated

interrupt caused either by an error or a user request

 An operating system is interrupt driven

I/O Structure

Synchronous I/O

 After I/O starts, control returns to user program only upon I/O
completion

 Wait instruction idles the CPU until the next interrupt

 Wait loop (contention for memory access)

 At most one I/O request is outstanding at a time, no
simultaneous I/O processing

Asynchronous I/O

 After I/O starts, control returns to user program without waiting
for I/O completion

 System call – request to the OS to allow user to wait for
I/O completion

 Device-status table contains entry for each I/O device
indicating its type, address, and state

 OS indexes into I/O device table to determine device status
and to modify table entry to include interrupt

Two I/O Methods

Device-Status Table

Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit

information at close to memory speeds.

 Device controller transfers blocks of data from

 buffer storage directly to main memory without CPU

intervention.

 Only one interrupt is generated per block, rather than

one interrupt per byte

Storage Structure

 Main memory – only large storage media that the CPU can access

directly

 Typically volatile

 Secondary storage – extension of main memory that provides large

nonvolatile storage capacity

 Hard disks – rigid metal or glass platters covered with magnetic

recording material

 Disk surface is logically divided into tracks, which are subdivided into

sectors

 The disk controller determines the logical interaction between the

device and the computer

 Solid-state disks – faster than hard disks, nonvolatile

 Various technologies

 Becoming more popular

Storage Hierarchy

 Storage systems organized in hierarchy

 Speed

 Cost

 Volatility

 Caching – copying information into faster storage

system; main memory can be viewed as a cache

for secondary storage

Storage-Device Hierarchy

Caching

 Important principle, performed at many levels in a

computer (in hardware, operating system, software)

 Information in use copied from slower to faster storage

temporarily

 Faster storage (cache) checked first to determine if

information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit

information at close to memory speeds

 Device controller transfers blocks of data from

buffer storage directly to main memory without

CPU intervention

 Only one interrupt is generated per block, rather

than the one interrupt per byte

How a Modern Computer Works

A von Neumann architecture

Evolution of OS

 Mainframe Systems

 Batch Systems

 Multiprogrammed Systems

 Time sharing Systems

 Desktop Systems

 Multiprocessor Systems

 Distributed Systems

 Client Server systems

 Peer-to-Peer systems

 Clustered Systems

 Real-Time Systems

 Hand Held Systems

Evolution of OS

Mainframe Systems – Simple Batch Systems:

 User prepare a job and submit it to a computer operator, get output some

time later

 No interaction between the user and the computer system

 Operator batches together jobs with similar needs to speedup processing

 Task of OS: automatically transfers control from one job to another.

 OS always resident in memory

 Disadvantages of one job at a time:

 CPU idle during I/O

 I/O devices idle when CPU busy

 OS is a resident monitor

 initial control in monitor

 control transfers to job

 when job completes control transfers back to monitor

Memory Layout for a Simple Batch System

Multiprogrammed Batch Systems
 Several jobs are kept in main memory at the same time, and the

 CPU is multiplexed among them

OS Features in a Multiprogrammed

System
 OS made decisions for users.

 Job Scheduling

 Choose the jobs from the job pool to be loaded into
Memory

CPU Scheduling

 Choosing the job to be run from a list of jobs ready
to run at the same time.

Time-Sharing Systems–Interactive

Computing

 Logical extension of Multiprogramming

 CPU executes multiple jobs by switching but the

switching occurs so fast, that the user can interact with

the program.

 Supports multiple users – little CPU time for every

 user- illusion that the system is dedicated to a single

user.

 Process: program in execution

Time-Sharing Systems – Contd.

 Interactive (action/response)

 when OS finishes execution of one command, it

seeks the next control statement from user.

 Eg: Switches jobs, when the current job needs

input from the user who is slow.

 File systems

 Resides on a collection of disks – disk mgmt is

necessary.

 Virtual memory

 Job is swapped in and out of memory to disk.

Desktop Systems

 Personal computers – computer system dedicated to a

single user.

 I/O devices – keyboards, mouse, display screens,

small printers.

 Single user systems may not need advanced CPU and

peripheral utilization.

 So concentrates on user convenience and

responsiveness.

 Due to the growth of intranets and internets, file

protection feature was adopted.

 May run several different types of operating systems

(Windows, MacOS, UNIX, Linux)

Multiprocessor Systems

 Also known as parallel systems or tightly coupled systems

 More than one processor in close communication, sharing

computer bus, clock, memory, and usually peripheral

devices

 Communication usually takes place through the shared

memory.

 Advantages

 Increased throughput

 Economy of scale: cheaper than multiple single-processor

systems

 Increased reliability: graceful degradation, fault tolerant

Multiprocessor Systems

Symmetric multiprocessing (SMP)

 Each processor runs an identical copy of the operating

system.

 All processors are peers: any processor can work on any

task

 OS can distribute load evenly over the processors.

 Most modern operating systems support SMP

Asymmetric multiprocessing

 Master-slave relationship: a master processor controls the

system, assigns works to other processors

 Each processor is assigned a specific task. Don't have the

flexibility to assign processes to the least loaded CPU

 More common in extremely large systems

Symmetric Multiprocessing Architecture

Distributed Systems

 Based on the concept of networking

 Distribute the computation among several physical

processors.

 Loosely coupled system – each processor has its own

local memory; processors communicate with one another

through various communications lines, such as high-speed

buses or telephone lines.

 Advantages of distributed systems.

 Resource Sharing

 Computation speed up – load sharing

 Reliability

Distributed Systems – contd.

 Requires networking infrastructure.

 Local area networks (LAN) or Wide area networks (WAN)

 Two types:

 client-server

 Compute – severs

 File-servers

 peer-to-peer systems.

General Structure of Client-Server

Clustered Systems

 Multiple CPUs to accomplish work but two or more

systems are coupled together.

 Provides high reliability.

 Asymmetric clustering:

 one server runs the application while the other server is

in hot standby mode monitoring.

 Symmetric clustering:

 all N hosts are running the application and monitoring

each other.

Clustered Systems

 Like multiprocessor systems, but multiple systems working together

 Usually sharing storage via a storage-area network (SAN)

 Provides a high-availability service which survives failures

 Asymmetric clustering has one machine in hot-standby mode

 Symmetric clustering has multiple nodes running applications,

monitoring each other

 Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

 Some have distributed lock manager (DLM) to avoid conflicting

operations

Clustered Systems

Operating System Structure

 Multiprogramming (Batch system) needed for efficiency

 Single user cannot keep CPU and I/O devices busy at all times

 Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling

 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running, creating

interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory process

 If several jobs ready to run at the same time  CPU scheduling

 If processes don’t fit in memory, swapping moves them in and out to run

 Virtual memory allows execution of processes not completely in memory

Operating-System Operations

 Interrupt driven (hardware and software)

 Hardware interrupt by one of the devices

 Software interrupt (exception or trap):

 Software error (e.g., division by zero)

 Request for operating system service

 Other process problems include infinite loop, processes
modifying each other or the operating system

Operating-System Operations (cont.)

 Dual-mode operation allows OS to protect itself and other system
components

 User mode and kernel mode

 Mode bit provided by hardware

 Provides ability to distinguish when system is running user
code or kernel code

 Some instructions designated as privileged, only
executable in kernel mode

 System call changes mode to kernel, return from call resets
it to user

 Increasingly CPUs support multi-mode operations

 i.e. virtual machine manager (VMM) mode for guest VMs

Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources

 Timer is set to interrupt the computer after some time period

 Keep a counter that is decremented by the physical clock.

 Operating system set the counter (privileged instruction)

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate

program that exceeds allotted time

