32-bit address space, 4 KB page

4KB page → 12 bits for page offset

□ How many bits for 2nd-level page table?

- Desirable to fit a 2nd-level page table in one page
- 4KB/4B = 1024 → 10 bits for 2nd-level page table

Address bits for top-level page table: 32 - 12 - 12 = 10

page number			page offset
	p i	p ₂	d
	10	10	12

Consider the same parameters:

- 1. logical address space: 32-bit
- 2. page size: 4KB (2^12)
- 3. page table entry size: 4 bytes.
- 4. physical memory: 2GB (2 ^31)

Number of entries in the page table = Number of physical pages =

 $(2^31)/(2^{12}) = 2^{19}$ physical pages or frames.

Let's say we use 1 byte process identifiers. Size of each page table entry would be:

8 bits (PID)+20bits (virtual page number)+4bits (access information) = 32 bits = 4 bytes.

Size of the page table = $(2^{19}) * 4 = 2MB$ for the entire system.