
File-System Interface

File-System Interface

 File Concept

 Access Methods

 Disk and Directory Structure

 File-System Mounting

 File Sharing

 Protection

Objectives

 To explain the function of file systems

 To describe the interfaces to file systems

 To discuss file-system design tradeoffs, including access

methods, file sharing, file locking, and directory structures

 To explore file-system protection

File Concept

 Contiguous logical address space

 Types:

 Data

 numeric

 character

 binary

 Program

 Contents defined by file’s creator

 Many types

 Consider text file, source file, executable file

File Attributes

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within file system

 Type – needed for systems that support different types

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection, security,

and usage monitoring

 Information about files are kept in the directory structure, which is

maintained on the disk

 Many variations, including extended file attributes such as file

checksum

 Information kept in the directory structure

File info Window on Mac OS X

File Operations

 File is an abstract data type

 Create

 Write – at write pointer location

 Read – at read pointer location

 Reposition within file - seek

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for entry Fi,

and move the content of entry to memory

 Close (Fi) – move the content of entry Fi in memory to

directory structure on disk

Open Files

 Several pieces of data are needed to manage open files:

 Open-file table: tracks open files

 File pointer: pointer to last read/write location, per

process that has the file open

 File-open count: counter of number of times a file is

open – to allow removal of data from open-file table when

last processes closes it

 Disk location of the file: cache of data access information

 Access rights: per-process access mode information

Open File Locking

 Provided by some operating systems and file systems

 Similar to reader-writer locks

 Shared lock similar to reader lock – several processes can

acquire concurrently

 Exclusive lock similar to writer lock

 Mediates access to a file

 Mandatory or advisory:

 Mandatory – access is denied depending on locks held and

requested

 Advisory – processes can find status of locks and decide

what to do

File Locking Example – Java API

import java.io.*;

import java.nio.channels.*;

public class LockingExample {

 public static final boolean EXCLUSIVE = false;

 public static final boolean SHARED = true;

 public static void main(String arsg[]) throws IOException {

 FileLock sharedLock = null;

 FileLock exclusiveLock = null;

 try {

 RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");

 // get the channel for the file

 FileChannel ch = raf.getChannel();

 // this locks the first half of the file - exclusive

 exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);

 /** Now modify the data . . . */

 // release the lock

 exclusiveLock.release();

File Locking Example – Java API (Cont.)

 // this locks the second half of the file - shared

 sharedLock = ch.lock(raf.length()/2+1, raf.length(),
 SHARED);

 /** Now read the data . . . */

 // release the lock

 sharedLock.release();

 } catch (java.io.IOException ioe) {

 System.err.println(ioe);

 }finally {

 if (exclusiveLock != null)

 exclusiveLock.release();

 if (sharedLock != null)

 sharedLock.release();

 }

 }

}

File Types – Name, Extension

File Structure

 None - sequence of words, bytes

 Simple record structure

 Lines

 Fixed length

 Variable length

 Complex Structures

 Formatted document

 Relocatable load file

 Can simulate last two with first method by inserting
appropriate control characters

 Who decides:

 Operating system

 Program

Sequential-access File

Access Methods

 Sequential Access
 read next

 write next

 reset

 no read after last write

 (rewrite)

 Direct Access – file is fixed length logical records
 read n

 write n

 position to n

 read next

 write next

 rewrite n

 n = relative block number

 Relative block numbers allow OS to decide where file should be placed

 See allocation problem in Ch 12

Simulation of Sequential Access on Direct-access File

Other Access Methods

 Can be built on top of base methods

 General involve creation of an index for the file

 Keep index in memory for fast determination of location of
data to be operated on (consider UPC code plus record of
data about that item)

 If too large, index (in memory) of the index (on disk)

 IBM indexed sequential-access method (ISAM)

 Small master index, points to disk blocks of secondary
index

 File kept sorted on a defined key

 All done by the OS

 VMS operating system provides index and relative files as
another example (see next slide)

Example of Index and Relative Files

Directory Structure

 A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

Disk Structure

 Disk can be subdivided into partitions

 Disks or partitions can be RAID protected against failure

 Disk or partition can be used raw – without a file system, or

formatted with a file system

 Partitions also known as minidisks, slices

 Entity containing file system known as a volume

 Each volume containing file system also tracks that file

system’s info in device directory or volume table of contents

 As well as general-purpose file systems there are many

special-purpose file systems, frequently all within the same

operating system or computer

A Typical File-system Organization

Types of File Systems

 We mostly talk of general-purpose file systems

 But systems frequently have may file systems, some general- and

some special- purpose

 Consider Solaris has

 tmpfs – memory-based volatile FS for fast, temporary I/O

 objfs – interface into kernel memory to get kernel symbols for

debugging

 ctfs – contract file system for managing daemons

 lofs – loopback file system allows one FS to be accessed in

place of another

 procfs – kernel interface to process structures

 ufs, zfs – general purpose file systems

Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

Directory Organization

 Efficiency – locating a file quickly

 Naming – convenient to users

 Two users can have same name for different files

 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all

Java programs, all games, …)

The directory is organized logically to obtain

Single-Level Directory

 A single directory for all users

 Naming problem

 Grouping problem

Two-Level Directory

 Separate directory for each user

 Path name

 Can have the same file name for different user

 Efficient searching

 No grouping capability

Tree-Structured Directories

Tree-Structured Directories (Cont.)

 Efficient searching

 Grouping Capability

 Current directory (working directory)

 cd /spell/mail/prog

 type list

Tree-Structured Directories (Cont)

 Absolute or relative path name

 Creating a new file is done in current directory

 Delete a file

 rm <file-name>

 Creating a new subdirectory is done in current directory

 mkdir <dir-name>

 Example: if in current directory /mail

 mkdir count

Deleting “mail” deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

 Have shared subdirectories and files

Acyclic-Graph Directories (Cont.)

 Two different names (aliasing)

 If dict deletes list dangling pointer

 Solutions:

 Backpointers, so we can delete all pointers

Variable size records a problem

 Backpointers using a daisy chain organization

 Entry-hold-count solution

 New directory entry type

 Link – another name (pointer) to an existing file

 Resolve the link – follow pointer to locate the file

General Graph Directory

General Graph Directory (Cont.)

 How do we guarantee no cycles?

 Allow only links to file not subdirectories

 Garbage collection

 Every time a new link is added use a cycle detection

algorithm to determine whether it is OK

File System Mounting

 A file system must be mounted before it can be accessed

 A unmounted file system (i.e., Fig. 11-11(b)) is mounted at a

mount point

Mount Point

File Sharing

 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing

method

 If multi-user system

 User IDs identify users, allowing permissions and

protections to be per-user

Group IDs allow users to be in groups, permitting group

access rights

 Owner of a file / directory

 Group of a file / directory

File Sharing – Remote File Systems

 Uses networking to allow file system access between systems

 Manually via programs like FTP

 Automatically, seamlessly using distributed file systems

 Semi automatically via the world wide web

 Client-server model allows clients to mount remote file systems from

servers

 Server can serve multiple clients

 Client and user-on-client identification is insecure or complicated

 NFS is standard UNIX client-server file sharing protocol

 CIFS is standard Windows protocol

 Standard operating system file calls are translated into remote calls

 Distributed Information Systems (distributed naming services) such

as LDAP, DNS, NIS, Active Directory implement unified access to

information needed for remote computing

File Sharing – Failure Modes

 All file systems have failure modes

 For example corruption of directory structures or other non-

user data, called metadata

 Remote file systems add new failure modes, due to network

failure, server failure

 Recovery from failure can involve state information about

status of each remote request

 Stateless protocols such as NFS v3 include all information in

each request, allowing easy recovery but less security

File Sharing – Consistency Semantics

 Specify how multiple users are to access a shared file

simultaneously

 Similar to Ch 5 process synchronization algorithms

 Tend to be less complex due to disk I/O and network

latency (for remote file systems

 Andrew File System (AFS) implemented complex remote file

sharing semantics

 Unix file system (UFS) implements:

 Writes to an open file visible immediately to other users of

the same open file

 Sharing file pointer to allow multiple users to read and write

concurrently

 AFS has session semantics

 Writes only visible to sessions starting after the file is

closed

Protection

 File owner/creator should be able to control:

 what can be done

 by whom

 Types of access

 Read

 Write

 Execute

 Append

 Delete

 List

Access Lists and Groups

 Mode of access: read, write, execute

 Three classes of users on Unix / Linux
 RWX

 a) owner access 7 1 1 1
 RWX

 b) group access 6 1 1 0

 RWX

 c) public access 1 0 0 1

 Ask manager to create a group (unique name), say G, and add
some users to the group.

 For a particular file (say game) or subdirectory, define an
appropriate access.

Attach a group to a file
 chgrp G game

Windows 7 Access-Control List Management

A Sample UNIX Directory Listing

Summary

 Function of file systems

 Interfaces to file systems

 Discussed file-system design tradeoffs, including access

methods, file sharing, file locking, and directory structures

 Explored file-system protection

