Operating-System Structures

Operating-System Structures

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Operating System Debugging

Operating System Generation

System Boot

Objectives

B To describe the services an operating system
provides to users, processes, and other
systems

B To discuss the various ways of structuring an
operating system

® To explain how operating systems are
Installed and customized and how they boot

Operating System Services

Operating systems provide an environment for execution of programs
and services to programs and users

One set of operating-system services provides functions that are
helpful to the user:

e User interface - Almost all operating systems have a user
interface (Ul).

» Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

e Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

e |/O operations - A running program may require I/O, which may
involve a file or an I/O device

Operating System Services (Cont.)

® One set of operating-system services provides functions that are helpful to
the user (Cont.):

e File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

e Communications — Processes may exchange information, on the same
computer or between computers over a network

» Communications may be via shared memory or through message
passing (packets moved by the OS)

e Error detection — OS needs to be constantly aware of possible errors

» May occur in the CPU and memory hardware, in I1/O devices, in user
program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’ s and
programmer’ s abilities to efficiently use the system

Operating System Services (Cont.)

B Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

e Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - CPU cycles, main memory, file storage,
I/O devices.

e Accounting - To keep track of which users use how much and what
kinds of computer resources

e Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other

» Protection involves ensuring that all access to system resources is
controlled

» Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access
attempts

A View of Operating System Services

user and other system programs

GUI batch command line
user interfaces
system calls
l/O file L resource .
: communication : accountin
operations systems allocation g
error pro;?]catlon
detection . securtty
services

operating system

hardware

User Operating System Interface - CLI

CLI or command interpreter allows direct
command entry

e Sometimes implemented in kernel,
sometimes by systems program

e Sometimes multiple flavors implemented —
shells

e Primarily fetches a command from user and
executes it

e Sometimes commands built-in, sometimes
just names of programs

» If the latter, adding new features doesn't
require shell modification

User Operating System Interface - GUI

m User-friendly desktop metaphor interface
e Usually mouse, keyboard, and monitor
e |cons represent files, programs, actions, etc

e Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute
function, open directory (known as a folder)

e Invented at Xerox PARC
® Many systems now include both CLI and GUI interfaces
e Microsoft Windows is GUI with CLI “command” shell

e Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

e Unix and Linux have CLI with optional GUI interfaces (CDE,
KDE, GNOME)

Touchscreen Interfaces

B Touchscreen devices
require new interfaces

e Mouse not possible or not desired

e Actions and selection based on
gestures

e Virtual keyboard for text entry

(HIcALC)

[

® Voice commands.

System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

Example of System Calls

B System call sequence to copy the contents of one file to
another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

A

Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t¢ read(int f£d, woid *buf, size t count)
I | | | | |

return function parameters

value name

A program that uses the read () function must include the unistd.h header

file, as this file defines the ssize t and size_t data types (among other
things). The parameters passed to read () are as follows:

* int fd—the file descriptor to be read
* void *buf —a buffer where the data will be read into

* size t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

System Call Implementation

Typically, a number associated with each system
call

e System-call interface maintains a table
Indexed according to these numbers

The system call interface invokes the intended
system call in OS kernel and returns status of the
system call and any return values

The caller need know nothing about how the
system call is implemented

e Just needs to obey API and understand what
OS will do as a result call

e Most details of OS interface hidden from
programmer by API

APl — System Call — OS Relationship

user application
open ()
user

mode
system call interface
kernel
mode A
| open ()
Implementation
i » of open ()
system call

return

System Call Parameter Passing

m Often, more information is required than simply
Identity of desired system call

e Exact type and amount of information vary
according to OS and call

B Three general methods used to pass parameters
to the OS

e Simplest: pass the parameters in registers

» In some cases, may be more parameters
than registers

e Parameters stored in a block, or table, in
memory, and address of block passed as a
parameter in a register

» This approach taken by Linux and Solaris
e Parameters placed, or pushed, onto the stack

Parameter Passing via Table

— X

register

X: parameters
for call

— ™ use parameters code for
load address X / from table X system
-

system call 13 call 13

user program

operating system

Types of System Calls

® Process control
e create process, terminate process
e end, abort
e |load, execute
e get process attributes, set process attributes
e walit for time
e wait event, signal event
e allocate and free memory
e Dump memory if error

e Debugger for determining bugs, single step
execution

e |LLocks for managing access to shared data between

Types of System Calls

B File management
e create file, delete file
® open, close file
e read, write, reposition
e get and set file attributes
® Device management
e request device, release device
e read, write, reposition
e get device attributes, set device attributes
e logically attach or detach devices

Types of System Calls (Cont.)

B Information maintenance

e get time or date, set time or date

e get system data, set system data

e get and set process, file, or device attributes
® Communications

e create, delete communication connection

e send, receive messages if message passing
model to host name or process name

» From client to server

e Shared-memory model create and gain
access to memory regions

e transfer status information

Types of System Calls (Cont.)

® Protection
e Control access to resources
e Get and set permissions
e Allow and deny user access

Examples of Windows and Unix System Calls

Windows Unix
Process CreateProcess () fork()
Control ExitProcess() exit()
WaitForSingleObject() wait ()
File CreateFile() open()
Manipulation ReadFile() read ()
WriteFile() write()
CloseHandle() close()
Device SetConsoleMode() ioctl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipe)
CreateFileMapping() shmget ()
MapViewOfFile() mmap ()
Protection SetFileSecurity() chmod ()

InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown()

Standard C Library Example

m C program invoking printf() library call, which calls
Write() system cAll

#include <stdio.h>
int main ()

printf ("Greetings");, |=-
returnm O,
}
user
mode -
standard C library
kernel
mode
write {

wrlte
system call

Example: MS-DOS

Single-tasking

Shell invoked when free memory
system booted
. free memory
Simple method to run
prOg ram process
e No process
d
created i%?;?;ﬂi?er _cct>mma[[1d
] Interpreter
Single memory space kel -
Loads program into (@) (b)

memory, overwriting At system startup running a program
all but the kernel

Program exit -> shell
reloaded

Example: FreeBSD

Unix variant
. . r
Multitasking process D
User login -> invoke user’ s free memory
choice of shell
Shell executes fork() system AETESE
call to create process
Interpreter
e Executes exec() to load
program into process
: rocess B
e Shell waits for process to ’
terminate or continues with
user commands kernel

Process exits with:
e code =0 - no error

System Programs

B System programs provide a convenient
environment for program development and
execution. They can be divided into:

e File manipulation

e Status information sometimes stored in a File
modification

e Programming language support
e Program loading and execution
e Communications

e Background services

e Application programs

B Most users’ view of the operation system is
defined hv svetem nroarame< not the actiial

System Programs

® Provide a convenient environment for program
development and execution

e Some of them are simply user interfaces to
system calls; others are considerably more
complex

® File management - Create, delete, copy, rename,
print, dump, list, and generally manipulate files
and directories

B Status information

e Some ask the system for info - date, time,
amount of available memory, disk space,
number of users

e Others provide detailed performance, logging,
and debugging information

System Programs (Cont.)

File modification
e Text editors to create and modify files

e Special commands to search contents of files
or perform transformations of the text

Programming-language support - Compilers,
assemblers, debuggers and interpreters
sometimes provided

Program loading and execution- Absolute
loaders, relocatable loaders, linkage editors, and
overlay-loaders, debugging systems for higher-
level and machine language

Communications - Provide the mechanism for
creating virtual connections among processes,
users, and computer systems

e Allow users to send messages to one

System Programs (Cont.)

B Background Services
e Launch at boot time
» Some for system startup, then terminate
» Some from system boot to shutdown

e Provide facilities like disk checking, process
scheduling, error logging, printing

e Run in user context not kernel context
e Known as services, subsystems, daemons

m Application programs
e Don’t pertain to system
e Run by users
e Not typically considered part of OS

a | amtinchad hw Afommand lina moatice ~licl finAaaoar

Operating System Design and Implementation

Design and Implementation of OS not “solvable”,
but some approaches have proven successful

Internal structure of different Operating Systems
can vary widely

Start the design by defining goals and
specifications

Affected by choice of hardware, type of system

User goals and System goals

e User goals — operating system should be
convenient to use, easy to learn, reliable, safe,
and fast

e <vetem Anale — nneratina ovetem <choniild he

Operating System Design and Implementation (Cont.)

B [mportant principle to separate

Policy: What will be done?
Mechanism: How to do it?

B Mechanisms determine how to do something,
policies decide what will be done

B The separation of policy from mechanism is a
very important principle, it allows maximum
flexibility if policy decisions are to be changed
later (example — timer)

®m Specifying and designing an OS is highly
creative task of software engineering

Implementation

® Much variation
e Early OSes in assembly language

e Then system programming languages like Algol,
PL/1

e Now C, C++

®m Actually usually a mix of languages
e Lowest levels in assembly
e Main body in C

e Systems programs in C, C++, scripting languages
like PERL, Python, shell scripts

B More high-level language easier to port to other
hardware

PR o Y TR [,

Operating System Structure

®m General-purpose OS is very large program
B Various ways to structure ones

e Simple structure — MS-DOS

e More complex -- UNIX

e Layered — an abstrcation

e Microkernel -Mach

Simple Structure -- MS-DOS

m MS-DOS — written to

provide the most
functionality in the least application program

Space
e Not divided Into resident system program

modules

® Although MS-DOS MS-DOS device driversf) |
has some structure,

Its interfaces and
levels of functionality

ROM BIOS device drivers

are not well separated

Non Simple Structure -- UNIX

UNIX — limited by hardware functionality, the
original UNIX operating system had limited
structuring. The UNIX OS consists of two
separable parts

e Systems programs
e The kernel

» Consists of everything below the system-
call interface and above the physical
hardware

» Provides the file system, CPU scheduling,
memory management, and other
operating-system functions; a large
number of functions for one level

Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

i signals terminal file system CPU scheduling
g . handling swapping block /O page replacement
2 character |/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Layered Approach

® The operating system " layerN
is divided into a number / gl
of layers (levels), each :
built on top of lower
layers. The bottom
layer (layer 0), is the
hardware; the highest

(layer N) is the user \
Interface.

layer 1

layer O
hardware

® With modularity, layers
are selected such that
each uses functions
(operations) and
services of only lower-
level lavers

Microkernel System Structure

B Moves as much from the kernel into user space
m Mach example of microkernel

e Mac OS X kernel (Darwin) partly based on
Mach

B Communication takes place between user
modules using message passing

B Benefits:
e Easier to extend a microkernel

e Easier to port the operating system to new
architectures

e More reliable (less code is running in kernel
mode)

® More sectlire

Microkernel System Structure

Application
Program

Device
Driver

messages

Interprocess
Communication

memory

microkernel

managment

CPU
scheduling

hardware

user
mode

kernel
mode

Modules

B Many modern operating systems implement
loadable kernel modules

e Uses object-oriented approach
e Each core component is separate

e Each talks to the others over known
Interfaces

e Each is loadable as needed within the kernel
®m Overall, similar to layers but with more flexible
e Linux, Solaris, etc

Solaris Modular Approach

scheduling
classes

kernel loadable

system calls
STREAMS executable
modules formats

miscellaneous
modules

device and
bus drivers
- core Solaris -

Hybrid Systems

B Most modern operating systems are actually not
one pure model

e Hybrid combines multiple approaches to
address performance, security, usability needs

e Linux and Solaris kernels in kernel address
space, so monolithic, plus modular for
dynamic loading of functionality

e Windows mostly monolithic, plus microkernel
for different subsystem personalities

m Apple Mac OS X hybrid, layered, Aqua Ul plus
Cocoa programming environment

e Below is kernel consisting of Mach microkernel
and BSD Unix parts, plus I/O kit and

A\llﬁ\ﬂm:f\ﬂll\l If\ﬂfJﬂlf'\If\ IM’\IJI llf\ﬁ /I\f\III\A IIf\I/'If\f\I

Mac OS X Structure

raphical user interface
grap Aqua

application environments and services

kernel environment

BSD

Mach

I/0O kit kernel extensions

10S

® Apple mobile OS for IPhone, iPad

e Structured on Mac OS X, added
functionality

e Does not run OS X applications
natively

» Also runs on different CPU
architecture (ARM vs. Intel)

e Cocoa Touch Objective-C API
for developing apps

e Media services layer for
graphics, audio, video

e Core services provides cloud
computing, databases

Cocoa Touch

Media Services

Core Services

Core OS

Android

®m Developed by Open Handset Alliance (mostly
Google)

e Open Source
B Similar stack to 10S
B Based on Linux kernel but modified

e Provides process, memory, device-driver
management

e Adds power management

B Runtime environment includes core set of
libraries and Dalvik virtual machine

e Apps developed in Java plus Android API

» Java class files compiled to Java bytecode
then translated to executable than runs in

Android Architecture

Application Framework

Libraries Android runtime
SQLite openGL Core Libraries
surface media .
manager framework Dl
anag virtual machine
webkit libc

Operating-System Debugging

® Debugging is finding and fixing errors, or bugs
B OS generate log files containing error information

m Failure of an application can generate core dump file
capturing memory of the process

B Operating system failure can generate crash dump
file containing kernel memory

® Beyond crashes, performance tuning can optimize
system performance

e Sometimes using trace listings of activities,
recorded for analysis

e Profiling is periodic sampling of instruction
pointer to look for statistical trends

Kernicdhan’ s | aw: “Debuaaina is twice a< hard as

Performance Tuning

® Improve

ile CQptions Wew Help

p e rfo rm an Ce by Applications | Processes EI-ﬁ'.éFF.'.-'.'FI-'HEI:IEE_E Metworking

CPU Usage CPU Usage Hisbor

. OS must prOVIde PF Lsage Page File Usage History

means of computing ;

an d d IS p | a.yl n g Totals Phwsical Memary (K

removing
bottlenecks

Handles 12621 Total 2096616
measures Of SySte m Threads 563 Avaiable 1391552

Processes 50 System Cache 1584184
b e h aVI O r Commit Charge (k) Kermel Memory (K)

Tokal 642128 Total 1158724

Lirnik 4036760 Paged 5636

B For example’ “to p” Peak 801216 Monpaged 33088
p rog ram Or Wi n d OWS Processes; S0 CPU Usage: 0% Carnmit Charge: 627M [3942
Task Manager

DTrace

)) # ./all.d ‘pgrep xclock' XEventsQueued
B DTrace t()()| N SOla”S, dtrace: script ’./all.d’ matched 52377 probes

FreeBSD, Mac OS X allows “©7 7oty

0 —-> XEventsOueued 9]

live instrumentation on 0 —> _XBventsQueued v
. 0 -> XllTransBytesReadable U
prOdUCUOn SyStemS 0] <— XllTransBytesReadable U
. . 0 -> XllTransSocketBytesReadable U

B Probes fire when code is 0 <- XllTransSocketBytesreadable U
A . 0 -> loctl U

execut_ed within a provider, o L ioorl %
capturing state data and 0 -> getf | K
. . 0 -> gset active fd K

0] <- getf K

those prObeS 0 -> get udatamodel K
0 <— get udatamodel K

m Example of following 0 -> releasef K
0 -> clear active fd K

XEventsQueued system calll Z. <. clear active fd 0
move from libc library to 0 ~> cv_broadeast K
0 <— cv_broadcast K

kernel and baCk 0 <— releasef K
0 <— loctl K

0 <— loctl U

0 <— _XEventsQueued g

0 «— XEventsQueued u

Dtrace (Cont.)

m DTrace code to record

amount of time each # dtrace -s sched.d
process with UserID 101 is gérace, script ‘sched.d” matched 6 probes
in running mode (on CPU) gnome-settings-d 142354
- ome-vis-daemon 158243
in nanoseconds i 189804
wnck-applet 200030
gnome-panel 277864
Sﬁhﬁfi ! ron-cpu clock-applet 374916
}Llld == 101 mapping-daemon 385475
self->ts = timestamp; Xscreensaver 514177
} ! metacity 539281
Xorg 2579646
ached: -+ gff—cpu g'rl[]mﬁ—terﬂ'l_il'lal 5007269
self->ts mixer applet2 7388447
java 10769137

@time [execname] = sum(timestamp - self->ts);
self->ts = 0;

}

Figure 2.21 Output of the D code.

Operating System Generation

B Operating systems are designed to run on any
of a class of machines; the system must be
configured for each specific computer site

B SYSGEN program obtains information
concerning the specific configuration of the
hardware system

e Used to build system-specific compiled
kernel or system-tuned

e Can general more efficient code than one
general kernel

System Boot

® When power initialized on system, execution starts
at a fixed memory location

e Firmware ROM used to hold initial boot code

B Operating system must be made available to
hardware so hardware can start it

e Small piece of code — bootstrap loader, stored
In ROM or EEPROM locates the kernel, loads it
Into memory, and starts it

e Sometimes two-step process where boot block
at fixed location loaded by ROM code, which
loads bootstrap loader from disk

B Common bootstrap loader, GRUB, allows

selection of kernel from multiple disks, versions,
kernel ontinne

End of Chapter 2

