SSN COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING COURSE ASSESSMENT PLAN

SUBJECT NAME	:	OPERATING SYSTEMS
SUBJECT CODE	:	CS6401
DEGREE / YEAR / SECTIONS	:	B.E. CSE/II YEAR/A & B
BATCH	:	2015-2019
SEMESTER	:	IV (2016-17: EVEN)
NAME OF THE STAFF	:	J. BHUVANA & S.RAJALAKSHMI

OBJECTIVES:

- 1. Study the basic concepts and functions of operating systems.
- 2. Understand the structure and functions of OS.
- 3. Learn about Processes, Threads and Scheduling algorithms.
- 4. Understand the principles of concurrency and Deadlocks.
- 5. Learn various memory management schemes.
- 6. Study I/O management and File systems.
- 7. Learn the basics of Linux system and perform administrative tasks on Linux Servers

Blooms Taxonomy

Remember	Understand	Apply	Analyze	Evaluate	Create
K1	K2	K3	K4	K5	K6

COURSE OUTCOMES

- 1. Understand the computer organization and functionalities of operating systems (K2).
- 2. Analyze various scheduling algorithms and apply the principles of concurrency (K4).
- 3. Examine the various deadlock prevention, avoidance, detection and recovery algorithms (K4).
- 4. Compare and contrast various memory management schemes and understand I/O systems (K4).
- 5. Understand the prototype file systems and perform administrative tasks on Linux Servers (K2)

Program Outcomes (PO)

- 1. Engineering knowledge: Our graduates will have the knowledge of mathematics, logic, probability and statistics, computer science and engineering, and the skill to apply them in the fields of computer software and hardware. **(K3)**
- **2.** Problem analysis: Our graduates will have the knowledge and skill to identify, formulate, and solve hardware and software problems using sound computer science principles. (**K3**, **K4**)

- **3.** Experimentation: Our graduates will have the skill to design and conduct experiments, organize, analyze, and interpret data. **(K3, K4, K5)**
- 4. Design and development: Our graduates will have the skill to design and construct hardware and software systems, components, or processes as per needs and specifications. **(K4)**
- 5. Team work: Our graduates will have the interpersonal and communication skills to function as team players on multidisciplinary teams. -
- 6. Modern tools usage: Our graduates will be able to use the techniques, skills, and modern hardware and software tools necessary for computer engineering practice. **(K2, K3)**
- 7. Social and environmental responsibility: Our graduates will demonstrate knowledge related to social, ethical, legal, economical, health and safety, sustainability and environmental dimensions.
- 8. Communication skills: Our graduates will be able to effectively communicate technical information in speech, presentation, and in writing.
- 9. Contemporariness: Our graduates will have knowledge of contemporary issues in the practice of their profession.
- 10. Self-learning: Our graduates will develop confidence for self learning and ability for life-long learning.
- 11. Competitive exam preparedness: Our graduates will participate and succeed in competitive examinations such as GATE, IES, GRE.
- 12. Leadership: Our graduates are trained to enhance their managerial skills, leadership quality and entrepreneurial spirit.

					-								
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		K3	K4	K5	K4	-	K3	-	-	-	-	-	-
CO1	K2	2	2	1	2	0	0	0	0	0	0	0	0
CO2	K4	3	3	2	3	0	0	0	0	0	0	0	0
CO3	K4	3	3	2	3	0	0	0	0	0	0	0	0
CO4	K4	3	3	2	3	0	0	0	0	0	0	0	0
CO5	K2	2	2	0	2	0	0	0	0	1	0	0	0

Course Outcomes Mapped To Programme Outcomes

Description of Assessment Tools

Exams: Three Unit Assessment Tests during the term, assignments, seminars and final University exams.

Course Assessment Matrix

Assessment Tools	Course Outcomes							
Assessment 1001s	CO1	CO2	CO3	CO4	CO5			
Assessment1	Х	Х						
Assessment2		Х	Х	Х				
Assessment3				Х	Х			

Justification of CO- PO mapping

CO		Knowledge	Remarks
		level	
CO1	Understand the computer organization and functionalities of operating systems.	K2	To understand the basic concepts and functions of operating systems
CO2	Analyze various scheduling algorithms and apply the principles of concurrency.	K4	To study about the Processes, Threads and communication and analyze the various scheduling algorithms
CO3	Examine the various deadlock prevention, avoidance, detection and recovery algorithms.	K4	To understand and analyze deadlock algorithms.
CO4	Compare and contrast various memory management schemes and understand I/O systems.	K4	To study and compare about the memory management schemes and I/O systems
CO5	Understand the prototype file systems and perform administrative tasks on Linux Servers.	K2	To learn the file systems and the basics of Linux system and its administrative tasks

Prepared By (J. BHUVANA & S.RAJALAKSHMI)

Verified By PAC Team

Approved By Dr. CHITRA BABU HOD-CSE